Global energy agencies and commissions report a sharp increase in energy demand based on commercial, industrial, and residential activities. At this point, we need energy-efficient and high-performance systems to maintain a sustainable environment. More than 30% of the generated electricity has been consumed by HVAC-R units, and heat exchangers are the main components affecting the overall performance. This study combines experimental measurements, numerical investigations, and ANN-aided optimization studies to determine the optimal operating conditions of an industrial shell and tube heat exchanger system. The cold/hot stream temperature level is varied between 10 ℃ and 50 ℃ during the experiments and numerical investigations. Furthermore, the flow rates are altered in a range of 50–500 L/h to investigate the thermal and hydraulic performance under laminar and turbulent regime conditions. The experimental and numerical results indicate that U-tube bundles dominantly affect the total pumping power; therefore, the energy consumption experienced at the cold side is about ten times greater the one at the hot side. Once the required data sets are gathered via the experiments and numerical investigations, ANN-aided stochastic optimization algorithms detected the C10H50 scenario as the optimal operating case when the cold and hot stream flow rates are at 100 L/h and 500 L/h, respectively.
Purpose—In the business sector, reliable and timely data are crucial for business management to formulate a company’s strategy and enhance supply chain efficiency. The main goal of this study is to examine how strong brand strength affects shareholder value with a new Supplier Relationship Management System (SRMS) and to find the specific system qualities that are linked to SRMS adoption. This leads to higher brand strength and stronger shareholder value. Design/Methodology/Approach—This study employed a cross-sectional design with an explanatory survey as a deductive technique to form hypotheses. The primary method of data collection used a drop-off questionnaire that was self-administered to the UAE-based healthcare suppliers. Of the 787 questionnaires sent to the healthcare suppliers, 602 were usable, yielding a response rate of 76.5%. To analyze the data gathered, the study used Partial Least Squares Structural Equation modelling (PLS-SEM) and artificial neural network (ANN) techniques. Findings—The study’s data proved that SRMS adoption and brand strength positively affected and improved healthcare suppliers’ shareholder value. Additionally, it demonstrates that user satisfaction is the most significant predictor of SRMS adoption, while the results show that the mediating role of brand strength is the most significant predictor of shareholder value. The results demonstrated that internally derived constructs were better explained by the ANN technique than by the PLS-SEM approach. Originality/Value—This study demonstrates its practical value by offering decision-makers in the healthcare supplier industry a reference on what to avoid and what elements to take into account when creating plans and implementing strategies and policies.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Copyright © by EnPress Publisher. All rights reserved.