1. United Nations. In: Proceedings of the United Nations Climate Change Conference (COP27); 2023.
2. International Energy Agency. Renewable Electricity Technical Report. Available online: https://www.iea.org/reports/renewable-electricity (accessed on 15 March 2025).
3. International Energy Agency. Buildings Technical Report. Available online: https://www.iea.org/reports/buildings (accessed on 15 March 2025).
4. Chenari B, Dias Carrilho J, Gameiro da Silva M. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews. 2016; 59: 1426–1447. doi: 10.1016/j.rser.2016.01.074
5. Tian J, Yu L, Xue R, et al. Global low-carbon energy transition in the post-COVID-19 era. Applied Energy. 2022; 307: 118205. doi: 10.1016/j.apenergy.2021.118205
6. Taş E, Güngör Ş. Design and analytical investigation on air-to-air cross flow heat exchanger of an industrial heat recovery ventilation system. Scientia cum Industria. 2023; 11(1): e231103. doi: 10.18226/23185279.e231103
7. Said Z, Rahman S, Sharma P, et al. Performance characterization of a solar-powered shell and tube heat exchanger utilizing MWCNTs/water-based nanofluids: An experimental, numerical, and artificial intelligence approach. Applied Thermal Engineering. 2022; 212: 118633. doi: 10.1016/j.applthermaleng.2022.118633
8. Laszczyk P. Simplified modeling of liquid-liquid heat exchangers for use in control systems. Applied Thermal Engineering. 2017; 119: 140–155. doi: 10.1016/j.applthermaleng.2017.03.033
9. Yang X, Guo J, Zhao S, et al. High shear mixer works as a heat exchanger enhancing the liquid–liquid direct contact heat transfer. International Journal of Heat and Mass Transfer. 2023; 200: 123547. doi: 10.1016/j.ijheatmasstransfer.2022.123547
10. Fratczak M, Czeczot J, Nowak P, et al. Practical validation of the effective control of liquid–liquid heat exchangers by distributed parameter balance-based adaptive controller. Applied Thermal Engineering. 2018; 129: 549–556. doi: 10.1016/j.applthermaleng.2017.10.056
11. Jige D, Sugihara K, Inoue N. Evaporation heat transfer and flow characteristics of vertical upward flow in a plate-fin heat exchanger. International Journal of Refrigeration. 2022; 133: 165–171. doi: 10.1016/j.ijrefrig.2021.09.030
12. Węglarz K, Taler D, Taler J. New non-iterative method for computation of tubular cross-flow heat exchangers. Energy. 2022; 260: 124955. doi: 10.1016/j.energy.2022.124955
13. Geoffroy H, Berger J, Gonze E, et al. Experimental dataset for an AHU air-to-air heat exchanger with normal and simulated fault operations. Journal of Building Performance Simulation. 2022; 16(3): 268–290. doi: 10.1080/19401493.2022.2097311
14. Lee S, Chung Y, Jeong Y, et al. Investigation on the performance enhancement of electric vehicle heat pump system with air-to-air regenerative heat exchanger in cold condition. Sustainable Energy Technologies and Assessments. 2022; 50: 101791. doi: 10.1016/j.seta.2021.101791
15. Zeng C, Liu S, Shukla A. A review on the air-to-air heat and mass exchanger technologies for building applications. Renewable and Sustainable Energy Reviews. 2017; 75: 753–774. doi: 10.1016/j.rser.2016.11.052
16. Tang F, Nowamooz H. Factors influencing the performance of shallow Borehole Heat Exchanger. Energy Conversion and Management. 2019; 181: 571–583. doi: 10.1016/j.enconman.2018.12.044
17. Kim M, Ha MY, Min JK. A numerical study on various pin–fin shaped surface air–oil heat exchangers for an aero gas-turbine engine. International Journal of Heat and Mass Transfer. 2016; 93: 637–652. doi: 10.1016/j.ijheatmasstransfer.2015.10.035
18. Alrwashdeh SS, Ammari H, Madanat MA, et al. The Effect of Heat Exchanger Design on Heat transfer Rate and Temperature Distribution. Emerging Science Journal. 2022; 6(1): 128–137. doi: 10.28991/esj-2022-06-01-010
19. Ariyo DO, Bello-Ochende T. Constructal design of two-phase stacked microchannel heat exchangers for cooling at high heat flux. International Communications in Heat and Mass Transfer. 2021; 125: 105294. doi: 10.1016/j.icheatmasstransfer.2021.105294
20. Jin Y, Gao N, Zhu T. Controlled variable analysis of counter flow heat exchangers based on thermodynamic derivation. Applied Thermal Engineering. 2018; 129: 684–692. doi: 10.1016/j.applthermaleng.2017.10.025
21. Mangrulkar CK, Dhoble AS, Chamoli S, et al. Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers. Renewable and Sustainable Energy Reviews. 2019; 113: 109220. doi: 10.1016/j.rser.2019.06.027
22. Feng CN, Liang CH, Li ZX. Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles. Energy and Buildings. 2022; 257: 111816. doi: 10.1016/j.enbuild.2021.111816
23. Wang S, Wen J, Li Y. An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. Applied Thermal Engineering. 2009; 29(11-12): 2433–2438. doi: 10.1016/j.applthermaleng.2008.12.008
24. Ozden E, Tari I. Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conversion and Management. 2010; 51(5): 1004–1014. doi: 10.1016/j.enconman.2009.12.003
25. Wang Q, Chen Q, Chen G, et al. Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles. International Journal of Heat and Mass Transfer. 2009; 52(5-6): 1214–1222. doi: 10.1016/j.ijheatmasstransfer.2008.09.009
26. Abbasian Arani AA, Moradi R. Shell and tube heat exchanger optimization using new baffle and tube configuration. Applied Thermal Engineering. 2019; 157: 113736. doi: 10.1016/j.applthermaleng.2019.113736
27. Gao B, Bi Q, Nie Z, et al. Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles. Experimental Thermal and Fluid Science. 2015; 68: 48–57. doi: 10.1016/j.expthermflusci.2015.04.011
28. Costa ALH, Queiroz EM. Design optimization of shell-and-tube heat exchangers. Applied Thermal Engineering. 2008; 28(14-15): 1798–1805. doi: 10.1016/j.applthermaleng.2007.11.009
29. Patel VK, Rao RV. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Applied Thermal Engineering. 2010; 30(11-12): 1417–1425. doi: 10.1016/j.applthermaleng.2010.03.001
30. Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A. Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Applied Thermal Engineering. 2009; 29(2-3): 203–209. doi: 10.1016/j.applthermaleng.2007.06.040
31. Gungor S. Experimental comparison on energy consumption and heat transfer performance of corrugated H-type and L-type brazed plate heat exchangers. International Communications in Heat and Mass Transfer. 2023; 144: 106763. doi: 10.1016/j.icheatmasstransfer.2023.106763
32. Turhan C, Çeter AE. A novel occupant detection-based ventilation control strategy for smart building applications. Mugla Journal of Science and Technology. 2021; 7(2): 24–35. doi: 10.22531/muglajsci.928315
33. Fox RW, McDonald AT, Pritchard PJ, Mitchell JW. Introduction to Fluid Mechanics. Wiley; 2014.
34. Bejan A. Convection Heat Transfer. Wiley; 2013.
35. Stanford University. Turbulent flow technical report. Available online: https://web.stanford.edu/class/me469b/handouts/turbulence.pdf (accessed on 15 March 2025).
36. ANSYS, Inc. ANSYS Fluent Theory Guide, Release 18.2. ANSYS, Inc; 2017.
37. Güngör S, Ceyhan U, Karadeniz ZH. Optimization of heat transfer in a grooved pipe model by Stochastic Algorithms and DOE based RSM. International Journal of Thermal Sciences. 2021; 159: 106634. doi: 10.1016/j.ijthermalsci.2020.106634
38. Aydin L, Artem HS, Oterkus S. Designing engineering structures using stochastic optimization methods. CRC Press; 2020.
39. Cavazzuti M. Optimization Methods: From theory to design scientific and technological aspects in mechanics. Springer Berlin Heidelberg; 2013.
40. Wolfram Research, Inc. Wolfram Mathematica, Release 11.3. Wolfram Research, Inc; 2018.
41. Incropera FP, Dewitt DP, Bergman TL, Lavine AS. Principles of Heat and Mass Transfer. Wiley; 2017.