Climate change is one of the most critical global challenges, driven primarily by the rapid increase in greenhouse gas concentrations. Carbon sequestration, the process by which ecosystems capture and store carbon, plays a key role in mitigating climate change. This study investigates the factors influencing carbon sequestration in subtropical planted forest ecosystems. Field data were collected from 100 randomly sampled plots of varying sizes (20 m² × 20 m² for trees, 5 m² × 5 m² for shrubs, and 1 m² × 1 m² for herbs) between February and April 2022. A total of 3,440 plants representing 36 species were recorded, with Prosopis juliflora and Prosopis cineraria as the dominant tree species and Desmostachya bipinnata as the dominant herb. Regression analysis, Pearson correlation, and structural equation modeling were performed using R software to explore relationships between carbon sequestration and various biotic and abiotic factors. Biotic factors such as diameter at breast height (DBH; R=0.94), tree height (R=0.83), and crown area (R=0.98) showed strong positive correlations with carbon sequestration. Abiotic factors like litter (R=0.37), humus depth (R=0.43), and electrical conductivity (E.C; R=0.11) also positively influenced carbon storage. Conversely, pH (R=-0.058), total dissolved solids (TDS; R=-0.067), organic matter (R=-0.1), and nitrogen (R=-0.096) negatively impacted carbon sequestration. The findings highlight that both biotic and abiotic factors significantly influence carbon sequestration in planted forests. To enhance carbon storage and mitigate climate change, efforts such as afforestation, reforestation, and conservation of subtropical forest ecosystems are essential.
The paper assesses the threshold at which climate change impacts banking system stability in selected Sub-Saharan economies by applying the panel threshold regression on data spanning 1996 to 2017. The study found that temperature reported a threshold of −0.7316 ℃. Further, precipitation had a threshold of 7.1646 mm, while the greenhouse gas threshold was 3.6680 GtCO2eq. In addition, the climate change index recorded a threshold of −0.1751%. Overall, a non-linear relationship was established between climate change variables and banking system stability in selected Sub-Saharan economies. The study recommends that central banks and policymakers propagate the importance of climate change uncertainties and their threshold effects to banking sectors to ensure effective and stable banking system operations.
The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s energy- and transportation-related greenhouse gas reduction plan. The number of passengers estimated during the feasibility study period was used to calculate the greenhouse gas reduction effect of project implementation. Most of the estimated numbers exceed the actual number of passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The variables affecting the number of passengers were the population in the vicinity of stations, offices, and shopping malls, the number of bus lines that serve the area, and the length of the road. The DDRM accurately predicted the number of passengers within 10% of the observed change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030.
Global warming is a problem that affects humanity; hence, crisis management in the face of natural events is necessary. The aim of the research was to analyze the passage of Hurricane Otis through Acapulco from the theoretical perspective of crisis management, to understand the socio-environmental, economic, and decision-making challenges. For data collection, content analysis and hemerographic review proved useful, complemented by theoretical contrastation. Findings revealed failures in communication by various government actors; the unprecedented growth of Hurricane Otis led to a flawed crisis management. Among the physical, economic, environmental, and social impacts, the latter stands out due to the humanitarian crisis overflow. It is the first time that Acapulco, despite having a tradition in risk management against hydrometeorological events, faces a hurricane of magnitude five on the Saffir-Simpson scale. Ultimately, the city was unprepared to face a category five hydrometeorological event; institutional responses were overwhelmed by the complexity of the crisis, and the community came together to improve its environment and make it habitable again.
Climate change is an important factor that must be considered by designers of large infrastructure projects, with its effects anticipated throughout the infrastructure’s useful life. This paper discusses how engineers can address climate change adaptation in design holistically and sustainably. It offers a framework for adaptation in engineering design, focusing on risk evaluation over the entire life cycle. This approach avoids the extremes of inaction and designing for worst-case impacts that may not occur for several decades. The research reviews case studies and best practices from different parts of the world to demonstrate effective design solutions and adjustment measures that contribute to the sustainability and performance of infrastructure. The study highlights the need for interdisciplinary cooperation, sophisticated modeling approaches, and policy interventions for developing robust infrastructure systems.
This research aims to build an appropriate leadership model for regional heads in mitigating disasters due to climate change that is occurring in Papua. Papua Island is one of the islands that is included in disaster-prone areas, namely earthquakes, flash floods, tidal floods and landslides. This disaster occurred due to Papua’s geological conditions in the form of activity on the Indo-Australian plate (southern part) and the Pacific plate (north-eastern part). Exploitation of nature carried out by companies and communities themselves in a particular area has an impact on the balance of the natural ecosystem. So far, disaster management has only focused on emergency response. Aid movements coordinated by ordinary people also focus more on raising aid for emergency situations. In fact, comprehensive disaster management includes before, during and after a disaster occurs. So a combination of leadership styles is needed that must be carried out at each phase of a disaster so that the right model can be produced. The results of this research found that the leadership model of regional heads in mitigating climate change in Papua is in accordance with the disaster management cycle with leadership styles, and traditional Papuan leadership styles. This combination is called a collaborative leadership model for disaster management in Papua. It is hoped that by implementing this model, climate change disaster mitigation can be effective.
Copyright © by EnPress Publisher. All rights reserved.