In today’s competitive and complex business environment, achieving business excellence requires a combination of effective methodologies and strong leadership to drive and sustain organizational transformation. Lean Six Sigma (LSS), a proven methodology for improving operational efficiency, relies on effective leadership for successful implementation and lasting impact. This study examines how the integration of Lean, Six Sigma, and Total Quality Management (TQM) shapes leadership strategies that enhance organizational agility, resilience, and responsiveness to market dynamics. It highlights the crucial role of leadership in fostering collaboration, optimizing resource utilization, and cultivating a culture of continuous improvement. The study introduces the Structured Lean Leadership Framework as a strategic tool to develop the leadership capabilities essential for LSS success, addressing challenges such as weak leadership commitment, resistance to change, and communication barriers. Through the application of the DMAIC framework, Key Performance Indicators (KPIs), and Voice of Customer (VOC) analysis, the research aligns LSS with business objectives, customer needs, and sustainability goals. Additionally, it explores how combining LSS with Agile methodologies can improve operational efficiency, governance, and innovation, helping organizations better navigate future challenges. This research offers valuable insights for executives, practitioners, and researchers, supporting leadership development, data-driven decision-making, and long-term value creation. Future studies should focus on validating the Structured Lean Leadership Framework, exploring Agile-LSS integration in regulated industries, and examining the impact of Industry 4.0 technologies on LSS and leadership.
This study sought an innovative quality management framework for Chinese Prefabricated Buildings (PB) projects. The framework combines TQM, QSP, Reconstruction Engineering, Six Sigma (6Σ), Quality Cost Management, and Quality Diagnosis Theories. A quantitative assessment of a representative sample of Chinese PB projects and advanced statistical analysis using Structural Equation Modeling supported the framework, indicating an excellent model fit (CFI = 0.92, TLI = 0.90, RMSEA = 0.06). The study significantly advances quality management and industrialized building techniques, but it also emphasizes the necessity for ongoing research, innovation, and information exchange to address the changing problems and opportunities in this dynamic area. In addition, this study’s findings and recommendations can help construction stakeholders improve quality performance, reduce construction workload and cost, minimize defects, boost customer satisfaction, boost productivity and efficiency in PB projects, and boost the Chinese construction industry’s growth and competitiveness.
Under the background of engineering education certification, the traditional personnel training model can’t meet the requirements of high-quality personnel training under the new engineering background. Taking Surveying and mapping engineering major of Liaoning Institute of Science and Technology as an example, this paper explores the continuous improvement of the output-oriented talent training model through collaborative education of talents training objectives, curriculum system, practical teaching system, teacher team construction, enterprises and graduates. Over the years, the surveying and mapping engineering major of our school has achieved good results in personnel training. The major actively ADAPTS to the regional development of the local economy, closely connects with the needs of regional talents, and highlights its characteristics in serving the local economy.
Copyright © by EnPress Publisher. All rights reserved.