The significant climate change the planet has faced in recent decades has prompted global leaders, policymakers, business leaders, environmentalists, academics, and scientists from around the world to unite their efforts since 1987 around sustainable development. This development not only promotes economic sustainability but also environmental, social, and corporate sustainability, where clean production, responsible consumption, and sustainable infrastructures prevail. In this context, the present article aims to propose a development framework for sustainability in food sector SMEs, which includes Life Cycle Assessment (LCA) and the integration of Environmental, Social, and Governance (ESG) strategies as key elements to reduce CO2 emissions and improve operational efficiency. The methodology includes a comparative analysis of strategies implemented between 2019 and 2023, supported by quantitative data showing a 20% reduction in operating costs, a 10% increase in market share, and a 25% increase in productivity for companies that adopted clean technologies. This study offers a significant contribution to the field of corporate sustainability, providing a model that is adaptable and applicable across different regions, enhancing innovation and business resilience in a global context that requires collective efforts to achieve the sustainable development goals.
Sustainability in road construction projects is hindered by the extensive use of non-renewable materials, high greenhouse gas emissions, risk cost, and significant disruption to the local community. Sustainability involves economic, environmental, and social aspects (triple bottom line). However, establishing metrics to evaluate economic, environmental, and social impacts is challenging because of the different nature of these dimensions and the shortage of accepted indicators. This paper developed a comprehensive method considering all three dimensions of sustainable development: economic, environmental, and social burdens. Initially, the economic, environmental, and social impact category indicators were assessed using the Life cycle approach. After that, the Analytic Hierarchy Process (AHP) method and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were utilized to prioritize the alternatives according to the acquired weightings and sustainable indicators. The steps of the AHP method involve forming a hierarchy, determining priorities, calculating weighting factors, examining the consistency of these assessments, and then determining global priorities/weightings. The TOPSIS method is conducted by building a normalized decision matrix, constructing the weighted normalized decision matrix, evaluating the positive and negative solutions, determining the separation measures, and calculating the relative closeness to the ideal solution. The selected alternative performs the highest Relative Closeness to the Ideal Solution. Lastly, a case study was undertaken to validate the proposed method. In three alternatives in the case study (Cement Concrete, Dense-Graded Polymer Asphalt Concrete, and Dense-Graded Asphalt Concrete), option 3 showed the most sustainable performance due to its highest Relative Closeness to the Ideal Solution. Integrating AHP and TOPSIS methods combines both strengths, including AHP’s structured approach for determining criteria weights through pairwise comparisons and TOPSIS’s ability to rank choices based on their proximity to an ideal solution.
According to the United Nations, by 2050, about 68% of the world’s population will live in urban areas. This population increase requires environmental resilience and planning ability to reduce the negative environmental impacts associated with growth. In this scenario, life cycle analysis, whose standards were introduced by ISO 14000 series, is an essential tool. From this perspective, smart cities whose concern about environmental sustainability is paramount corroborating SDG 11. This study aims to provide a holistic view of environmental technologies developed by Brazilian inventors, focused on life cycle analysis, which promotes innovation by helping cities build greener, more efficient, resilient, and sustainable environments. The methodology of this article was an exploratory study and investigated the scenario of patents in the life cycle. 209 patent processes with Brazilian inventors were found in the Espacenet database. Analyzing each of the results individually revealed processes related to air quality, solid waste, and environmental sanitation. The review of patent processes allowed mapping of the technological advances linked to life cycle analysis, finding that the system is still little explored and can present competitive advantages for cities.
This study provides an evaluation of the environmental impact and economic benefits associated with the disposal of mango waste in Thailand, utilizing the methodologies of life cycle assessment (LCA) and cost-benefit analysis (CBA) in accordance with internationally recognized standards such as ISO 14046 and ISO 14067. The study aimed to assess the environmental impact of mango production in Thailand, with a specific focus on its contribution to global warming. This was achieved through the application of a life cycle assessment methodology, which enabled the determination of the cradle-to-grave environmental impact, including the estimation of the mango production’s global warming potential (GWP). Based on the findings of the feasibility analysis, mango production is identified as a novel opportunity for mango farmers and environmentally conscious consumers. This is due to the fact that the production of mangoes of the highest quality is associated with a carbon footprint and other environmental considerations. Based on the life cycle assessment conducted on conventional mangoes, taking into account greenhouse gas (GHG) emissions, it has been determined that the disposal of 1 kg of mango waste per 1 rai through landfilling results in an annual emission of 8.669 tons of carbon. This conclusion is based on comprehensive data collected throughout the entire life cycle of the mangoes. Based on the available data, it can be observed that the quantity of gas released through the landfilling process of mango waste exhibits an annual increase in the absence of any intervening measures. The cost benefit analysis conducted on the life cycle assessment (LCA) of traditional mango waste has demonstrated that the potential benefits derived from its utilization are numerous. The utilization of the life cycle assessment (LCA) methodology and the adoption of a sustainable business model exemplify the potential for developing novel eco-sustainable products derived from mango waste in forthcoming time.
Copyright © by EnPress Publisher. All rights reserved.