Synthetic composite membranes and their manifold applications: A comprehensive review
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.