Modified chitosan hybrids were obtained via chemical reaction of chitosan with two pyrazole aldehyde derivatives to produce two chitosan Schiff bases, Cs-SB1, and Cs-SB2, respectively. FTIR spectroscopy and scanning electron microscopy confirmed both chemical structures and morphology of these Schiff bases. Thermal gravimetric analysis showed an improvement of thermal properties of these Schiff bases. Both chitosan Schiff bases were evaluated in a batch adsorption approach for their ability to remove Cu(II) ions from aqueous solutions. Energy dispersive X-ray for the Schiff bases adsorbed metal ions in various aqueous solutions was performed to confirm the existence of adsorbed metal ions on the surface substrate and their adsorptive efficiency for Cu(II) ions. Results of the batch adsorption method showed that prepared Schiff bases have good ability to remove Cu(II) ions from aqueous solutions. The Langmuir isotherm equation showed a better fit for both adsorbents with regression coefficients (R2 = 0.97 and 0.99, respectively) with maximum adsorption capacity for Cu(II) of 10.33 and 39.84 mg/g for Cs-SB1 and Cs-SB2, respectively. All prepared compounds, pyrazoles and two chitosan Schiff bases, showed good antimicrobial activity against three Gram +ve bacteria, three Gram –ve bacteria and Candida albicans, with varying degrees when compared to the standard antimicrobial agents.
In this review are developed insights from the current research work to develop the concept of functional materials. This is understood as real modified substrates for varied applications. So, functional and modified substrates focused on nanoarchitectures, microcapsules, and devices for new nanotechnologies highlighting life sciences applications were revised. In this context, different types of concepts to proofs of concepts of new materials are shown to develop desired functions. Thus, it was shown that varied chemicals, emitters, pharmacophores, and controlled nano-chemistry were used for the design of nanoplatforms to further increase the sizes of materials. In this regard, the prototyping of materials was discussed, affording how to afford the challenge in the design and fabrication of new materials. Thus, the concept of optical active materials and the generation of a targeted signal through the substrate were developed. Moreover, advanced concepts were introduced, such as the multimodal energy approach by tuning optical coupling from molecules to the nanoscale within complex matter composites. These approaches were based on the confinement of specific optical matter, considering molecular spectroscopics and nano-optics, from where the new concept nominated as metamaterials was generated. In this manner, fundamental and applied research by the design of hierarchical bottom-up materials, controlling molecules towards nanoplatforms and modified substrates, was proposed. Therefore, varied accurate length scales and dimensions were controlled. Finally, it showed proofs of concepts and applications of implantable, portable, and wearable devices from cutting-edge knowledge to the next generation of devices and miniaturized instrumentation.
Industrial plastics have seen considerable progress recently, particularly in manufacturing non-lethal projectile holders for shock absorption. In this work, a variety of percentages of alumina (Al2O3) and carbon black (CB) were incorporated into high-density polyethylene (HDPE) to investigate the additive material effect on the consistency of HDPE projectile holders. The final product with the desired properties was controlled via physical, thermal, and mechanical analysis. Our research focuses on nanocomposites with a semicrystalline HDPE matrix strengthened among various nanocomposites. In the presence of compatibility, mixtures of variable compositions from 0 to 3% by weight were prepared. The reinforcement used was verified by X-ray diffraction (XRD) characterization, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for thermal property investigation. Alumina particles increased the composites’ thermal system and glass transition temperature. Mechanical experiments indicate that incorporating alumina into the matrix diminishes impact resistance while augmenting static rupture stress. Scanning electron microscopy (SEM) revealed a consistent load distribution. Ultimately, we will conduct a statistical analysis to compare the experimental outcomes and translate them into mathematical answers that elucidate the impact of filler materials on the HDPE matrix.
Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
Water scarcity, particularly in arid and semi-arid regions, is a critical issue affecting forest management. This study investigates the effects of drought stress on the water requirement and morphological characteristics of two important tree species Turkish pine and Chinaberry. Using a factorial design, the study examines the impact of three age stages (one-year-old, three-year-old, and five-year-old plants) and three levels of drought stress on these species. Microlysimeters of varying sizes were employed to simulate different drought conditions. Soil moisture was monitored to show the effect of the various irrigation schedules. The study also calculated reference crop evapotranspiration (ET0) using the PMF-56 method and developed plant coefficients (Kc) for the species. Results showed that evapotranspiration increased with soil moisture, peaking during summer and decreasing in winter. Turkish pine exhibited higher plant ET than Chinaberry, particularly among one-year-old seedlings. Drought stress significantly reduced evapotranspiration and water uses for both species, highlighting the importance of efficient water management in afforestation projects. The findings underscore the necessity of selecting drought-resistant species and optimizing irrigation practices to enhance the sustainability of green spaces in arid regions. These insights are crucial for improving urban forestry management and mitigating the impacts of water scarcity in Iran and similar climates globally.
Copyright © by EnPress Publisher. All rights reserved.