1. Kathuria Y. Chapter 6. Laser-produced Rapid Prototyping in Manufacturing. In: International Trends in Applied Optics. SPIE Digital Library; 2002. pp. 1-14.
2. Satzinger V, Schmidt V, Kuna L, et al. Rapid prototyping of micro-optics on organic light emitting diodes and organic photo cells by means of two-photon 3D lithography and nano-imprint lithography. Micro-Optics 2008. 2008; 6992: 699217. doi: 10.1117/12.781129
3. Maniewski P, Harvey CM, Mühlberger K, et al. Rapid prototyping of silica optical fibers. Optical Materials Express. 2022; 12(7): 2426. doi: 10.1364/ome.459400
4. Liu J, Yang Q, Shou Y, et al. Metasurface-Assisted Quantum Nonlocal Weak-Measurement Microscopy. Physical Review Letters. 2024; 132(4). doi: 10.1103/physrevlett.132.043601
5. Keskinbora K. Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography. SPIE; 2019. doi: 10.1117/3.2531118
6. Selin C, Boradkar P. Prototyping Nanotechnology: A Transdisciplinary Approach to Responsible Innovation. Journal of Nano Education. 2010; 2(1): 1-12. doi: 10.1166/jne.2010.1002
7. Yao K, Zhong H, Liu Z, et al. Plasmonic Metal Nanoparticles with Core–Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano. 2019; 13(5): 5397-5409. doi: 10.1021/acsnano.9b00135
8. Bandari VK, Schmidt OG. A bright future for micro-LED displays. Light: Science & Applications. 2024; 13(1). doi: 10.1038/s41377-024-01683-z
9. Kumar G, Lin CC, Kuo HC, et al. Enhancing photoluminescence performance of perovskite quantum dots with plasmonic nanoparticles: insights into mechanisms and light-emitting applications. Nanoscale Advances. 2024; 6(3): 782-791. doi: 10.1039/d3na01078c
10. Mark AG, Gibbs JG, Lee TC, et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nature Materials. 2013; 12(9): 802-807. doi: 10.1038/nmat3685
11. Li Y, Xia H, Xu J. Synthesis and Applications of Functional Nanomaterials. Journal of Physics: Conference Series. 2021; 2133(1): 012006. doi: 10.1088/1742-6596/2133/1/012006
12. Bracamonte, AG, Invited Guest Editor. Tuning Enhanced signaling from Optical active Nanoplatforms for Biophotonics and Bio-analytical applications. Available online: https://www.frontiersin.org/journals/chemistry (aceesed on 2 November 2024).
13. Advances in Research on Graphene and Related Materials: From Preparation and tuning properties to Applications. Materials.
14. Bracamonte AG. Frontiers in Nano- and Micro-device Design for Applied Nanophotonics, Biophotonics and Nanomedicine. Bentham Science Publishers (UAE); 2021.
15. Lv X, Zhang Y, Wang X, et al. Multilayer Graphene Oxide Supported ZIF-8 for Efficient Removal of Copper Ions. Nanomaterials. 2022; 12(18): 3162. doi: 10.3390/nano12183162
16. Ali SM, Noghanian S, Khan ZU, et al. Wearable and Flexible Sensor Devices: Recent Advances in Designs, Fabrication Methods, and Applications. Sensors. 2025; 25(5): 1377. doi: 10.3390/s25051377
17. Yan Y, Song C, Shen Z, et al. Programming structural and magnetic anisotropy for tailored interaction and control of soft microrobots. Communications Engineering. 2024; 3(1). doi: 10.1038/s44172-023-00145-5
18. Lu L, Chen N, Yuan B, et al. Illuminating the invisible: Advancing bio-imaging and diagnosis with modified near-infrared fluorescents. Applied Materials Today. 2024; 38: 102210. doi: 10.1016/j.apmt.2024.102210
19. Hansen AE, Henriksen JR, Jølck RI, et al. Multimodal soft tissue markers for bridging high-resolution diagnostic imaging with therapeutic intervention. Applied Materials Today. 2024; 38: 1-19.
20. Lin TE, Rapino S, Girault HH, et al. Electrochemical imaging of cells and tissues. Chemical Science. 2018; 9(20): 4546-4554. doi: 10.1039/c8sc01035h
21. Schneider C, Nikitichev D, Xia W, et al. Multispectral tissue mapping: developing a concept for the optical evaluation of liver disease. Journal of Medical Imaging. 2020; 7(06). doi: 10.1117/1.jmi.7.6.066001
22. Dong D, Huang X, Li L, et al. Super-Resolution Fluorescence Assisted Diffraction Computational Tomography Reveals the Three-Dimensional Landscape of Cellular Organelle Interactome. Imaging and Applied Optics Congress. Published online 2020: HF1G.6. doi: 10.1364/dh.2020.hf1g.6
23. Matsumoto K, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules. 2021; 26(6): 1614. doi: 10.3390/molecules26061614
24. Chen Y, Lou Z, Chen Z, et al. Magnetic–Fluorescent Responsive Janus Photonic Crystal Beads for Self-Destructive Anti-counterfeiting. Langmuir. 2022; 38(46): 14387-14399. doi: 10.1021/acs.langmuir.2c02546
25. Heintz A, Sold S, Wühler F, et al. Design of a Multimodal Imaging System and Its First Application to Distinguish Grey and White Matter of Brain Tissue. A Proof-of-Concept-Study. Applied Sciences. 2021; 11(11): 4777. doi: 10.3390/app11114777
26. Xiao Z, Wang K, Lu X, et al. Fabrication of multimodal optical imaging agents through direct triplet energy transfer from rare-earth doped nanoparticles. Journal of Luminescence. 2025; 280: 121092. doi: 10.1016/j.jlumin.2025.121092
27. Sun Y, Guo Z. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons. 2019; 4(1): 52-76. doi: 10.1039/c8nh00223a
28. Hodson R. Precision medicine. Nature. 2016; 537(7619): S49-S49. doi: 10.1038/537s49a
29. Liang P, Ding C, Sun H, et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein & Cell. 2017; 8(11): 811-822. doi: 10.1007/s13238-017-0475-6
30. Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: Moving from the lab to the clinic. Science. 2019; 365(6460): 1409-1413. doi: 10.1126/science.aax4588
31. Wang D, Heiss E, Šmejkal K, et al. Bioactive Molecules and Their Mechanisms of Action. Molecules. 2019; 24(20): 3752. doi: 10.3390/molecules24203752
32. Syed AM, Ciling A, Taha TY, et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. Proceedings of the National Academy of Sciences. 2022; 119(31). doi: 10.1073/pnas.2200592119
33. Yao H, Yang Z, Fan X, et al. A light-tunable thermoresponsive supramolecular switch with reversible and complete “off-on”/“on-off” conversion. Materials Chemistry Frontiers. 2019; 3(6): 1168-1173. doi: 10.1039/c9qm00141g
34. Rosenblum D, Peer D. Omics-based nanomedicine: The future of personalized oncology. Cancer Letters. 2014; 352(1): 126-136. doi: 10.1016/j.canlet.2013.07.029
35. Kirschen WID, Hutchinson W, Bracamonte AG. Conjugation Reactions of Hybrid Organosilanes for Nanoparticles and surface modifications. J. Chem. Res. Adv. (JCRA). 2021; 2(1): 6-15.
36. Huynh MC, Thanh Diep T, Le TTT, et al. Advances in colloidal dispersions: A review. Journal of Dispersion Science and Technology. 2019; 41(4): 479-494. doi: 10.1080/01932691.2019.1591970
37. Luna RGP, Sofia M, Cecilia T, et al. Nano-chemistry and Bio-conjugation with perspectives on the design of Nano-Immune platforms, vaccines and new combinatorial treatments. Journal of Vaccines and Immunology. 2021; 049-056. doi: 10.17352/jvi.000047
38. Nguyen HL, Nguyen HN, Nguyen HH, et al. Nanoparticles: synthesis and applications in life science and environmental technology. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2014; 6(1): 015008. doi: 10.1088/2043-6262/6/1/015008
39. Inda A, Martinez SM, Tettamanti CS, et al. Chapter 7 - Nanoengineering multifunctional organized systems highlighting hybrid micelles, vesicles and lipidic aggregates towards higher sized structures for theranostics perspectives.Theranostics Nanomaterials in Drug Delivery. 2025: 111-132. doi: 10.1016/B978-0-443-22044-9.00020-6
40. Dalacu D, Poole PJ, Williams RL. Nanowire-based sources of non-classical light. Nanotechnology. 2019; 30(23): 232001. doi: 10.1088/1361-6528/ab0393
41. Gontero D, Veglia AV, Bracamonte AG, et al. Synthesis of ultraluminescent gold core-shell nanoparticles as nanoimaging platforms for biosensing applications based on metal-enhanced fluorescence. RSC Advances. 2017; 7(17): 10252-10258. doi: 10.1039/c6ra27649k
42. Bracamonte G. Advances in new Matter Properties and Applications of Hybrid Graphene-based Metamaterials. Current Material Science. 2022; 15(3): 215–219.
43. Bracamonte AG, Hutchinson W. Electronic Properties and Pseudo-Electromagnetic Fields of Highly Conjugated Carbon Nanostructures. Current Materials Science. 2022; 15(3): 204-214. doi: 10.2174/2666145414666211006124712
44. Nie L, Nusantara AC, Damle VG, et al. Quantum monitoring of cellular metabolic activities in single mitochondria. Science Advances. 2021; 7(21). doi: 10.1126/sciadv.abf0573
45. Choueiri RM, Galati E, Thérien-Aubin H, et al. Surface patterning of nanoparticles with polymer patches. Nature. 2016; 538(7623): 79-83. doi: 10.1038/nature19089
46. Meng L, Zeng T, Jin Y, et al. Surface-Modified Substrates for Quantum Dot Inks in Printed Electronics. ACS Omega. 2019; 4(2): 4161-4168. doi: 10.1021/acsomega.9b00195
47. Du J, Li Y, Wang J, et al. Mechanically Robust, Self-Healing, Polymer Blends and Polymer/Small Molecule Blend Materials with High Antibacterial Activity. ACS Applied Materials & Interfaces. 2020; 12(24): 26966-26972. doi: 10.1021/acsami.0c06591
48. Elsayed SM, Widyaya VT, Shafi Y, et al. Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity. Molecules. 2019; 24(18): 3371. doi: 10.3390/molecules24183371
49. Cellesi F, Tirelli N. Injectable nanotechnology. Injectable Biomaterials. Published online 2011: 298-322. doi: 10.1533/9780857091376.3.298
50. Cheng Z, Shurer CR, Schmidt S, et al. The surface stress of biomedical silicones is a stimulant of cellular response. Science Advances. 2020; 6(15). doi: 10.1126/sciadv.aay0076
51. Li Y, Chen X, Jin R, et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Science Advances. 2021; 7(9). doi: 10.1126/sciadv.abd6740
52. M. Rabanel J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-Loaded Nanocarriers: Passive Targeting and Crossing of Biological Barriers. Current Medicinal Chemistry. 2012; 19(19): 3070-3102. doi: 10.2174/092986712800784702
53. Jyothi NVN, Prasanna PM, Sakarkar SN, et al. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation. 2010; 27(3): 187-197. doi: 10.3109/02652040903131301
54. Parlak O, Keene ST, Marais A, et al. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances. 2018; 4(7). doi: 10.1126/sciadv.aar2904
55. Goodfellow KM, Chakraborty C, Beams R, et al. Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor. Nano Letters. 2015; 15(8): 5477-5481. doi: 10.1021/acs.nanolett.5b01898
56. Chen S, Wang F, Kuang F, et al. Femtosecond Pulsed Fiber Laser by an Optical Device Based on NaOH-LPE Prepared WSe2 Saturable Absorber. Nanomaterials. 2022; 12(16): 2747. doi: 10.3390/nano12162747
57. Bracamonte AG. Design of new High Energy near Field Nanophotonic materials for far Field applications. In: Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer Nature, Switzerland; 2022. pp. 859-920.
58. Brouard D, Ratelle O, Bracamonte AG, et al. Direct molecular detection of SRY gene from unamplified genomic DNA by metal-enhanced fluorescence and FRET. Analytical Methods. 2013; 5(24): 6896. doi: 10.1039/c3ay41428k
59. Salinas C, Amé MV, Bracamonte AG. Synthetic non-classical luminescence generation by enhanced silica nanophotonics based on nano-bio-FRET. RSC Advances. 2020; 10(35): 20620-20637. doi: 10.1039/d0ra02939d
60. Fu Y, Zhang J, Lakowicz JR. Silver-enhanced fluorescence emission of single quantum dot nanocomposites. Chem Commun. 2009; (3): 313-315. doi: 10.1039/b816736b
61. Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 1946; 69: 681.
62. Humar M, Kwok SJJ, Choi M, et al. Toward biomaterial-based implantable photonic devices. Nanophotonics. 2017; 6(2): 414-434. doi: 10.1515/nanoph-2016-0003
63. Wang Z, Bai H, Yu W, et al. Flexible bioelectronic device fabricated by conductive polymer–based living material. Science Advances. 2022; 8(25). doi: 10.1126/sciadv.abo1458
64. Roblyer D. Perspective on the increasing role of optical wearables and remote patient monitoring in the COVID-19 era and beyond. Journal of Biomedical Optics. 2020; 25(10). doi: 10.1117/1.jbo.25.10.102703
65. Maksimović M. The roles of nanotechnology and internet of nano things in healthcare transformation. TecnoLógicas. 2017; 20(40): 139-153. doi: 10.22430/22565337.720
66. Luo Y, Abidian MR, Ahn D, et al. Technology Roadmap for Flexible Sensors. ACS Nano. 2023; 17(6): 5211-5295.
67. Salminger S, Sturma A, Hofer C, et al. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Science Robotics. 2019; 4(32). doi: 10.1126/scirobotics.aaw6306
68. Larivière-Loiselle C, Bélanger E, Marquet P. Polychromatic digital holographic microscopy: a quasicoherent-noise-free imaging technique to explore the connectivity of living neuronal networks. Neurophotonics. 2020; 7(04). doi: 10.1117/1.nph.7.4.040501
69. Susaki EA, Shimizu C, Kuno A, et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nature Communications. 2020; 11: 1-10.
70. Ludvig N. Rationale of replacing the upper part of the human skull with a biocompatible, re-chargeable, re-fillable and re-cleanable electrical/molecular device to safely and effectively treat and/or cure severe, currently intractable brain disorders. Academia Letters. Published online August 31, 2021. doi: 10.20935/al3355
71. Bracamonte AG. Neurophotonics by controlled signal tracking from chemical structures, and Biostructures towards the Nanoscale and beyond. Frontiers in Drug, Chemistry and Clinical Research. 2022; 5(1). doi: 10.15761/fdccr.1000159
72. Schulz M, Probst S, Calabrese S, et al. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification. Molecules. 2020; 25(8): 1914. doi: 10.3390/molecules25081914
73. Dahiya UR, Gupt GD, Dhaka RS, et al. Functionalized Co2FeAl Nanoparticles for Detection of SARS CoV-2 Based on Reverse Transcriptase Loop-Mediated Isothermal Amplification. ACS Applied Nano Materials. 2021; 4(6): 5871-5882. doi: 10.1021/acsanm.1c00782
74. Bracamonte AG. Microarrays towards nanoarrays and the future Next Generation of Sequencing methodologies (NGS). Sensing and Bio-Sensing Research. 2022; 37: 100503. doi: 10.1016/j.sbsr.2022.100503