Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
The area of lake surface water is shrinking rapidly in Central Asia. We explore anthropogenic and climate factors driving this trend in Shalkar Lake, located in the Aral Sea region in Kazakhstan, Central Asia. We employ the Landsat satellite archive to map interannual changes in surface water between 1986 and 2021. The high temporal resolution of our dataset allows us to analyze the water surface data to investigate the time series of surface water change, economic and agricultural activities, and climate drivers like precipitation, evaporation, and air temperature. Toward this end, we utilize dynamic linear models (DLM). Our findings suggest that the shrinking of Shalkar Lake does not exhibit a systemic trend that could be associated with climate factors. Our empirical analysis, adopted to address local conditions, reveals that water reduction in the area is related to human interventions, particularly agricultural activities during the research period. On the other hand, the retrospectively fitted values indicate a semi-regular periodicity despite anthropogenic factors. Our results demonstrate that climate factors still play an essential role and should not be disregarded. Additionally, considering long-term climate projections in environmental impact assessment is crucial. The projected increase in temperatures and the corresponding decline in lake size highlights the need for proactive measures in managing water resources under changing climatic conditions.
Copyright © by EnPress Publisher. All rights reserved.