Using the rank scale rule, taking 47 major port cities in China from 2001 to 2015 as research samples, this paper discusses the rank scale characteristics and hierarchical structure of coastal port city system from a multi-functional perspective, and divides the coupling type of multi-functional development based on shipping logistics. The research shows that: 1) from 2001 to 2015, the scale-free area of manufacturing function order scale distribution in the coastal port city system appeared bifractal structure, the hierarchical segmentation characteristics appeared, and the other functions were single fractal; From the perspective of long-term evolution, only the order and scale distribution of shipping logistics function has developed from centralization to equilibrium, while the business function, manufacturing function (scale-free region I), modern service function and population distribution function are in a centralized situation. 2) The hierarchical structure of coastal port city system has gradually changed from pyramid structure to spindle structure, and generally formed five levels: national hub, regional hub, regional sub center, regional node and local node. 3) From the perspective of multi-functional coupling types, the traditional functions of port cities are generally ahead, while the high-end service functions lag behind, and the improvement speed of urban functions is slow and tends to be flat, indicating that the multi-functional development of China’s coastal port cities is still at a low level, and the industrial system structure needs to be further optimized. 4) From the perspective of port cities at different levels, the functions of regional hub cities and regional sub central cities are in the stage of rapid growth; regional and local node cities are still in the growth stage of traditional functions such as industry and commerce.
Helical deep hole drilling is a process frequently used in industrial applications to produce bores with a large length to diameter ratio. For better cooling and lubrication, the deep drilling oil is fed directly into the bore hole via two internal cooling channels. Due to the inaccessibility of the cutting area, experimental investigations that provide information on the actual machining and cooling behavior are difficult to carry out. In this paper, the distribution of the deep drilling oil is investigated both experimentally and simulatively and the results are evaluated. For the Computational Fluid Dynamics (CFD) simulation, two different turbulence models, i.e. the RANS k-ω-SST and hybrid SAS-SST model, are used and compared. Thereby, the actual used deep drilling oil is modelled instead of using fluid dynamic parameters of water, as is often the case. With the hybrid SAS-SST model, the flow could be analyzed much better than with the RANS k-ω-SST model and thus the processes that take place during helical deep drilling could be simulated with realistic details. Both the experimental and the simulative results show that the deep drilling oil movement is almost exclusively generated by the tool rotation. At the tool’s cutting edges and in the flute, the flow velocity drops to zero for the most part, so that no efficient cooling and lubrication could take place there. In addition, cavitation bubbles form and implode, concluding in the assumption that the process heat is not adequately dissipated and the removal of chips is adversely affected, which in turn can affect the service life of the tool and the bore quality. The carried out investigations show that the application of CFD simulation is an important research instrument in machining technology and that there is still great potential in the area of tool and process optimization.
The smallest administrative unit of the sixth national census-township (town) is selected as the basic unit, the population spatial distribution characteristics at the township (town) level in karst mountainous areas of northwest Guangxi are analyzed by using Lorenz curve and spatial correlation analysis method, and the influence intensity of natural factors on regional population spatial distribution is detected by using geographic detector method. The results show that: 1. the spatial distribution of population at the township (town) level has the characteristics of imbalance, showing generally significant positive correlation and certain aggregation; 2. There are significant differences in the impact of the spatial distribution of various natural factors on the population distribution. For the towns without karst distribution in the northwest and central south of the study area, the population density increases with the increase of factors conducive to human residence, but the average population density is only 79 people/km2. In the towns with karst distribution in the East and south, the spatial distribution of population density and natural factors is not a simple increase or decrease relationship, but fluctuates with the change of karst distribution area. 3. The factor detection results of the geographic detector show that the altitude has the greatest impact on the spatial distribution of population. The interactive detection results show that the impact intensity of any two natural factors after superposition and interaction presents nonlinear enhancement and two factor enhancement. It can be seen that the karst mountain area in northwest Guangxi is similar to other areas. Altitude is one of the main factors affecting the spatial distribution of population, but the river network density and unique geological landform of karst mountain area have a strong catalytic effect on the spatial distribution of population. The superposition and interaction with other factors can further strengthen the impact on population distribution.
Increasing water consumption has increased using of synthetic nutritional methods for enriching groundwater resources. Artificial feeding is a method that can save excess water for using in low level water time in underground. The purpose of this study is to evaluate the performance of the flood dispersal and artificial feeding system in the Red Garden of Shahr-e-Daghshan and improving, saving quality of the groundwater table in the area. In order to investigate the performance of these plans, an area of 1570 km2 was considered in the Southern of Shah-Reza. The statistics data from 5 years before the design of the plans (1986-2002) related to flood control fluctuations in 20 observation wells and many indicator Qanat were surveyed in this area. The annual fluctuations in the level of the station show a rise in the level of the station after the depletion of the plan. Dewatering of the first and second turns, with an increase of more than one meter above groundwater level, has had the highest impact on the level of groundwater table in the region. Reduced permeability at sediment levels, wasted flood through evaporation and wasteful exploitation of groundwater resources, cause to loss of the impact on the increase in the level and quality of groundwater in the area, especially in the dry, drought season and recent high droughts.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
Copyright © by EnPress Publisher. All rights reserved.