This research investigates the effects of drying on some selected vegetables, which are Telfaria occidentalis, Amaranthu scruentus, Talinum triangulare, and Crussocephalum biafrae. These vegetables were collected fresh, sliced into smaller sizes of 0.5 cm, and dried in a convective dryer at varying temperatures of 60.0 °C, 70.0 °C and 80.0 °C respectively, for a regulated fan speed of 1.50 ms‒1, 3.00 ms‒1 and 6.00 ms‒1, and for a drying period of 6 hours. It was discovered that the drying rate for fresh samples was 4.560 gmin‒1 for Talinum triangulare, 4.390 gmin‒1for Amaranthu scruentus, 4.580 gmin‒1 for Talinum triangulare, and 4.640 gmin‒1 for Crussocephalum biafrae at different controlled fan speeds and regulated temperatures when the mass of the vegetable samples at each drying time was compared to the mass of the final samples dried for 6 hours. The samples are considered completely dried when the drying time reaches a certain point, as indicated by the drying rate and moisture contents tending to zero. According to drying kinetics, the rate of moisture loss was extremely high during the first two hours of drying and then steadily decreased during the remaining drying duration. The rate at which moisture was removed from the vegetable samples after the drying process at varying regulated temperatures was noted to be in this trend: 80.0 °C > 70.0 °C > 60.0 °C and 6.0 ms‒1 > 3.0 ms‒1 > 1.5 ms‒1 for regulated fan speed. It can be stated here that the moisture contents has significant effects on the drying rate of the samples of vegetables investigated because the drying rate decreases as the regulated temperatures increase and the moisture contents decrease. The present investigation is useful in the agricultural engineering and food engineering industries.
A comprehensive proteomic analysis was carried out to evaluate leaf proteome changes of Brassica napus cultivars as an important oilseed crop inoculated with the bacterium Pseudomonas fluorescens FY32 under salt stress. Based on the physiochemical characteristics of canola, Hyola308 was a tolerant and Sarigol was a salt sensitive cultivar. Gel-based proteomics indicated that proteins related to energy/metabolism, cell/membrane maintenance, signalins, stress, and development respond to salt stress and bacterial inoculation in both cultivars. Under salt stress, Hyola308 launches mechanisms similar to Sarigol, but the tolerance was related to consuming less energy consumption than Sarigol for launching the proper pathway/mechanism. Inoculation with plant growth promoting bacteria promotes relative growth rate and net assimilation rate; causes increase in soluble sugar content (12–32% varing to cultivars and salt treatments), as an osmo-protectant, in leaves of Sarigol and Hyola308 in control and salt stress conditions. The groups of proteins that are affected due to inoculation (18 and14 functional groups in Hyola308 and Sarigol, respectively) are varying to stress-influenced groups (10 and 6 functional groups in Hyola308 and Sarigol, respectively) that might be because of regulating tolerance mechanism of plant and/or plant-growth promoting bacteria inoculation. Furthermore, it is recognized that P. fluorescens FY32 has a dual effect on the cultivars including a pathogenic effect and a growth promoting effect on both cultivars under salt stress.
This study evaluates the effectiveness of Indonesia’s defense industry policy from 2018 to 2023, focusing on PT Pindad, a pivotal state-owned defense enterprise. Using a Balanced Scorecard (BSC) framework, the study assesses PT Pindad’s performance across financial, customer, internal process, and learning and growth perspectives. The findings reveal strengths in financial stability (Current Ratio at 115.57% in 2023) and customer satisfaction, but challenges in Return on Investment (ROI), which fell from 6% in 2022 to 5.46% in 2023, signaling a need for further internal improvements. A mediation analysis using Shape-Restricted Regression indicates that Research and Development (R&D) serves as a crucial mediator, enhancing the impact of strategic alliances and technology transfer on PT Pindad’s self-reliance, with R&D showing a positive coefficient of β = 0.53 (p < 0.01). The systematic literature review complements these findings, underscoring the role of technology transfer, human capital development, and strategic partnerships as essential components for strengthening PT Pindad’s self-reliance and global competitiveness. Recommendations are made to enhance policy effectiveness by fostering robust technology transfer mechanisms, increasing investment in human capital, and expanding strategic partnerships. This research contributes to the literature on defense industry policies by providing a comprehensive evaluation framework that informs future policy decisions.
The multifaceted nature of the skills required by new-age professions, reflecting the dynamic evolution of the global workforce, is the focal point of this study. The objective was to synthesize the existing academic literature on these skills, employing a scientometric approach . This involved a comprehensive analysis of 367 articles from the merged Scopus and Web of Science databases. Science. We observed a significant increase in annual scientific output, with an increase of 87.01% over the last six years. The United States emerged as the most prolific contributor, responsible for 21.61% of total publications and receiving 34.31% of all citations. Using the Tree algorithm of Science (ToS), we identified fundamental contributions within this domain. The ToS outlined three main research streams: the convergence of gender, technology, and automation; defining elements of future work; and the dualistic impact of AI on work, seen as both a threat and an opportunity. Furthermore, our study explored the effects of automation on quality of life, the evolving meaning of work, and the emergence of new skills. A critical analysis was also conducted on how to balance technology with humanism, addressing challenges and strategies in workforce automation. This study offers a comprehensive scientometric view of new-age professions, highlighting the most important trends, challenges, and opportunities in this rapidly evolving field.
Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Copyright © by EnPress Publisher. All rights reserved.