The MDA-MB-231 cell line is derived from triple-negative breast cancer (TNBC), representing one of the most aggressive forms of breast cancer. Innovative therapeutic strategies, including s targeted therapies using nanocarriers, hold significant promise, particularly for difficult-to-treat cancers such as TNBC. Nanoparticles have transformed the medical field by serving as advanced drug delivery systems for cancer treatment. They play a critical role in overcoming the drug resistance often associated with cancer therapies. When utilized as drug delivery vehicles, nanoparticles can specifically target cancer cells and effectively reduce or eliminate multidrug resistance. Among them, chitosan-coated magnetic nanoparticles (MNPs) have been widely explored for the loading and controlled release of various anticancer agents. In this study, we evaluated the effects of dexamethasone-loaded chitosan-coated MNPs on MDA-MB-231 cell lines. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to verify the successful loading of dexamethasone onto the nanoparticles. To assess cytotoxicity, empty nanoparticles, free drug, and drug-loaded nanoparticles were tested on the cells. The results indicated that empty nanoparticles exhibited no toxic effects. The IC50 value of the free drug was 123 µg/mL, while the IC50 value of the drug-loaded nanoparticles was significantly lower, at 63 µg/mL. These findings confirmed the successful conjugation of dexamethasone to the chitosan-coated MNPs, demonstrating substantial cytotoxic effects on breast cancer cells. Although dexamethasone has been reported to exhibit both tumor-suppressive and pro-metastatic effects, its specific impact on TNBC warrants further investigation in future studies.
This study delves into the complex flow dynamics of magnetized bioconvective Ellis nanofluids, highlighting the critical roles of viscous dissipation and activation energy. By employing a MATLAB solver to tackle the boundary value problem, the research offers a thorough exploration of how these factors, along with oxytactic microorganism’s mobility, shape fluid behavior in magnetized systems. Our findings demonstrate that an increase in the magnetization factor leads to a decrease in both velocity and temperature due to enhanced interparticle resistance from the Lorentz force. Additionally, streamline analysis reveals that higher mixed convection parameters intensify flow concentration near surfaces, while increased slip parameters reduce shear stress and boundary layer thickness. Although isotherm analysis shows that higher Ellis fluid parameters enhance heat conduction, with greater porosity values promoting efficient thermal dissipation. These insights significantly advance our understanding of nanofluid dynamics, with promising implications for bioengineering and materials science, setting the stage for future research in this field.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
There are diverse effects in consequence of exposure to radiofrequency electromagnetic fields (RF-EMF). The interactions of fields and the exposed body tissues are related to the nature of exposure, tissue comportment, field strength and signal frequency. These interactions can crop different effects.
This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
Clinical/methodological problem: The identification of clinically significant prostate carcinomas while avoiding overdiagnosis of low-malignant tumors is a challenge in routine clinical practice. Standard radiologic procedures: Multiparametric magnetic resonance imaging (MRI) of the prostate acquired and interpreted according to PI-RADS (Prostate Imaging Reporting and Data System Guidelines) is accepted as a clinical standard among urologists and radiologists. Methodological innovations: The PI-RADS guidelines have been newly updated to version 2.1 and, in addition to more precise technical requirements, include individual changes in lesion assessment. Performance: The PI-RADS guidelines have become crucial in the standardization of multiparametric MRI of the prostate and provide templates for structured reporting, facilitating communication with the referring physician. Evaluation: The guidelines, now updated to version 2.1, represent a refinement of the widely used version 2.0. Many aspects of reporting have been clarified, but some previously known limitations remain and require further improvement of the guidelines in future versions.
Copyright © by EnPress Publisher. All rights reserved.