Joshi MS, Joshi GR. Analysis of SAR induced in human head due to the exposure of non-ionizing radiation. International Journal of Engineering Research & Technology (IJERT) 2016; 5(2): 364–367. doi: IJERTV5IS020466.
Sallomi AH, Hashim SA, Wali MH. SAR and thermal effect prediction in human head exposed to cell phone radiations. Science International. (Lahore) 2018; 30(4): 653–656.
Hamed T, Maqsood M. SAR calculation & temperature response of human body exposure to electromagnetic radiations at 28, 40 and 60 GHz mm wave frequencies. Progress in Electromagnetics Research M 2018; 73: 47–59. doi: 10.2528/PIERM18061102.
Baker-Jarvis J, Kim S. The interaction of radio frequency fields with dielectric materials at macroscopic to mesoscopic scales. Journal of Research of the National Institute of Standards and Technology 2012; 117: 1–60. doi: 10.6028/jres.117.001.
Lin JC. Safety of wireless power transfer. IEEE Access 2021; 9: 125342–125347. doi: 10.1109/ACCESS.2021.3108966.
Ding P, Bernard L, Pichon L, et al. Evaluation of electromagnetic fields in human body exposed to wireless inductive charging system. IEEE Transactions on Magnetics 2014; 50(2): 1037–1040. doi: 10.1109/TMAG.2013.2284245.
Wang Q, Li W, Kang J, et al. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle. IEEE Transactions on Electromagnetic Compatibility 2019; 61: 1913–1925. doi: 10.1109/TEMC.2018.2875903.
Maxwell JC. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 1865; 155: 459–512. doi: 10.5479/sil.423156.39088007130693.
Lozinskii MG. Industrial applications of induction heating. Oxford, UK: Pergamon Press Publications; 1969.
Mühlbauer A. History of induction heating and melting. Essen, Germany: Vulkan-Verlag Publications; 2008.
Watanabe T, Nagaya S, Hirano N, et al. Elemental development of metal melting by electromagnetic induction heating using superconductor coils. IEEE Transactions on Applied Superconductivity 2016; 26: 1–4. doi: 10.1109/TASC.2016.2524651.
Hu Q, He Y, Wang F, et al. Microwave technology: A novel approach to the transformation of natural metabolites. Chinese Medicine 2021; 16(1): 87. doi: 10.1186/s13020-021-00500-8.
Kumar C, Karim MA. Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition 2019; 59(3): 379–394. doi: 10.1080/10408398.2017.1373269.
Razek A. Assessment and categorization of biological effects and atypical symptoms owing to exposure to rf fields from wireless energy devices. Applied Sciences 2023; 13(3): 1265. doi: 10.3390/app13031265.
Razek A. Coupled models in electromagnetic and energy conversion systems from smart theories paradigm to that of complex events: A review. Applied Sciences 2022; 12(9): 4675. doi: 10.3390/app12094675.
Watanabe T, Nagaya S, Hirano N, et al. Development of conduction-cooled superconducting split coil for metal melting by DC induction heating. IEEE Transactions on Applied Superconductivity 2018; 28(3): 1–4. doi: 10.1109/TASC.2017.2783891.
Plumed E, Lope I, Acero J. Induction heating adaptation of a different-sized load with matching secondary inductor to achieve uniform heating and enhance vertical displacement. IEEE Transactions on Power Electronics 2021; 36: 6929–6942. doi: 10.1109/TPEL.2020.3033833.
Biswal SK, Pal S. Numerical investigation of the dimension factor of hairpin coil for sustainable induction heating. In: Recent advances in manufacturing modelling and optimization: Select proceedings of RAM 2021. Singapore: Springer Nature Singapore; 2022. p. 11–19.
Zhu G, Liu X, Li L, et al. A novel nonlinearity marginalization technique for effective solution of induction heating problems by cell method. Journal of Physics D: Applied Physics 2020; 53(24): 245502. doi: 10.1088/1361-6463/ab7f72.
Vishnuram P, Ramachandiran G, Sudhakar Babu T, et al. Induction heating in domestic cooking and industrial melting applications: A systematic review on modelling, converter topologies and control schemes. Energies 2021; 14(20): 6634. doi: 10.3390/en14206634.
Yu SH, Park DJ, Kim KC. Heat source analysis of an induction heater for an electric vehicle. IEEE Transactions on Magnetics 2017; 53(6): 1–4. doi: 10.1109/CEFC.2016.7816082.
Lucía O, Maussion P, Dede EJ, et al. Induction heating technology and its applications: Past developments, current technology, and future challenges. IEEE Transactions on Industrial Electronics 2014; 61(5): 2509–2520. doi: 10.1109/TIE.2013.2281162.
Acero J, Lope I, Burdío JM, et al. Performance evaluation of graphite thin slabs for induction heating domestic applications. IEEE Transactions on Industry Applications 2015; 51: 2398–2404. doi: 10.1109/TIA.2014.2369824.
Villa J, Navarro D, Dominguez A, et al. Vessel recognition in induction heating appliances—A deep-learning approach. IEEE Access 2021; 9: 16053–16061. doi: 10.1109/ACCESS.2021.3052864.
Oh H, Jeong G, Park C, et al. A study on high-frequency induction heating system for railway turnout. In: 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS); 2019 Jul 9–12; Toulouse, France. New Jersey: IEEE; 2020. p. 1–4.
Mevec D, Raninger P, Prevedel P, et al. A posteriori reconstruction of the temperature distribution in surface hardened tempering steel. Scientific Reports 2020; 10(1): 7481. doi: 10.1038/s41598-020-63328-6.
Dong H, Zhao Y, Yuan H. Effect of coil width on deformed shape and processing efficiency during ship hull forming by induction heating. Applied Sciences 2018; 8(9): 1585. doi: 10.3390/app8091585.
Apostolidis P, Liu X, Kasbergen C, et al. Toward the design of an induction heating system for asphalt pavements with the finite element method. Transportation Research Record: Journal of the Transportation Research Board 2017; 2633(1): 136–146. doi: 10.3141/2633-16.
Bui HT, Hwang SJ. Modeling a working coil coupled with magnetic flux concentrators for barrel induction heating in an injection molding machine. International Journal of Heat and Mass Transfer 2015; 86: 16–30. doi: 10.1016/j.ijheatmasstransfer.2015.02.057.
Sekkak A, Pichon L, Razek A. 3-D FEM magneto-thermal analysis in microwave ovens. IEEE Transactions on Magnetics 1994; 30(5): 3347–3350. doi: 10.1109/20.312655.
Ge C, Duan B, Lou S, et al. On improving convergence characterization to solve the electromagnetic–thermal model. IEEE Transactions on Microwave Theory and Techniques 2021; 69(8): 3624–3634. doi: 10.1109/TMTT.2021.3076211.
Rodrigues DB, Ellsworth J, Turner P. Feasibility of heating brain tumors using a 915 MHz annular phased-array. IEEE Antennas and Wireless Propagation Letters 2021; 20(4): 423–427. doi: 10.1109/LAWP.2021.3050142.
Zastrow E, Hagness SC, Van Veen, BD, et al. Time-multiplexed beamforming for noninvasive microwave hyperthermia treatment. IEEE Transactions on Biomedical Engineering 2011; 58(6): 1574–1584. doi: 10.1109/TBME.2010.2103943.
Redr J, Pokorny T, Drizdal T, et al. Microwave hyperthermia of brain tumors: A 2D assessment parametric numerical study. Sensors 2022; 22(16): 6115. doi: 10.3390/s22166115.
Rittersdorf IM, Hoff BW, Richardson AS, et al. A 1-D model for the millimeter-wave absorption and heating of dielectric materials in power beaming applications. IEEE Transactions on Plasma Science 2021; 49(2): 695–702. doi: 10.1109/TPS.2021.3051108.
Sekkak A, Kanellopoulos VN, Pichon L, et al. A thermal and electromagnetic analysis in biological objects using 3D finite elements and absorbing boundary conditions. IEEE Transactions on Magnetics 1995; 31(3): 1865–1868. doi: 10.1109/20.376401.
Bellizzi GG, Drizdal T, van Rhoon GC, et al. The potential of constrained SAR focusing for hyperthermia treatment planning: Analysis for the head & neck region. Physics in Medicine & Biology 2019; 64(1): 015013. doi: 10.1088/1361-6560/aaf0c4.
International Commission on Non‐Ionizing Radiation Protection. Guide‐lines for limiting exposure to time‐varying electric and magnetic fields for low frequencies (1 Hz–100 kHz). Health Physics 2010; 99(6): 818–836. doi: 10.1097/HP.0b013e3181f06c86.
International Commission on Non‐Ionizing Radiation Protection. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Physics 2020; 118(5): 483–524. doi: 10.1097/HP.0000000000001210.
C95.1-2009 - IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. New York: IEEE; 2019. doi: 10.1109/IEEESTD.2019.8859679.
Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology 1998; 85(1): 5–34. doi: 10.1152/jappl.1998.85.1.5.
Cirimele V, Freschi F, Giaccone L, et al. Human exposure assessment in dynamic inductive power transfer for automotive applications. IEEE Transactions on Magnetics 2017; 53(6): 5000304. doi: 10.1109/TMAG.2017.2658955.
Hariri H, Bernard Y, Razek A. Dual piezoelectric beam robot: The effect of piezoelectric patches positions. Journal of Intelligent Material Systems and Structures 2015; 26: 2577–2590. doi: 10.1177/1045389X15572013.
Nunes A, Daniel L, Hage-Hassan M, et al. Modeling of the magnetic behavior of permanent magnets including ageing effects. Journal of Magnetism and Magnetic Materials 2020; 512: 166930. doi: 10.1016/j.jmmm.2020.166930.
Ren Z, Razek A. New technique for solving three‐dimensional multiply connected eddy‐current problems. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews) 1990; 137(3): 135–140. doi: 10.1049/ip-a-2.1990.0021.
Jiao D, Jin JM. An effective algorithm for implementing perfectly matched layers in time‐domain finite‐element simulation of open‐region EM problems. IEEE Transactions on Antennas and Propagation 2002; 50(11): 1615–1623. doi: 10.1109/TAP.2002.803987.
Sun Q, Zhang R, Zhan Q, Liu QH. 3‐D implicit–explicit hybrid finite difference/spectral element/finite element time domain method without a buffer zone. IEEE Transactions on Antennas and Propagation 2019; 67(8): 5469–5476. doi: 10.1109/TAP.2019.2913740.
Harris LR, Zhadobov M, Chahat N, et al. Electromagnetic dosimetry for adult and child models within a car: Multi-exposure scenarios. International Journal of Microwave and Wireless Technologies 2011; 3(6): 707–715. doi: 10.1017/S1759078711001000.
Barchanski A, Steiner T, De Gersem H, et al. Local grid refinement for low-frequency current computations in 3-D human anatomy models. IEEE Transactions on Magnetics 2006; 42(4): 1371–1374. doi: 10.1109/TMAG.2006.871449.
Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine & Biology 1996; 41: 2251–2269. doi: 10.1088/0031-9155/41/11/002.
Kim JH, Lee JK, Kim HG, et al. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomolecules & Therapeutics 2019; 27(3): 265–275. doi: 10.4062/biomolther.2018.152.
Wust P, Kortüm B, Strauss U, et al. Non-thermal effects of radiofrequency electromagnetic fields. Scientific Reports 2020; 10(1): 13488. doi: 10.1038/s41598-020-69561-3.