Renewable energy is gaining momentum in developing countries as an alternative to non-renewable sources, with rooftop solar power systems emerging as a noteworthy option. These systems have been implemented across various provinces and cities in Vietnam, accompanied by government policies aimed at fostering their adoption. This study, conducted in Ho Chi Minh City, Vietnam investigates the factors influencing the utilization of rooftop solar power systems by 309 individuals. The research findings, analyzed through the Partial least squares structural equation modeling (PLS-SEM) model, reveal that policies encouragement and support, strategic investment costs, product knowledge and experience, perceived benefits assessment, and environmental attitudes collectively serve as predictors for the decision to use rooftop solar power systems. Furthermore, the study delves into mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also furnishes policymakers with evidence to chart new directions for encouraging the widespread adoption of solar power systems.
Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
Magnetite magnetic nanoparticles (MNP) exhibit superparamagnetic behavior, which gives them important properties such as low coercive field, easy superficial modification and acceptable magnetization levels. This makes them useful in separation techniques. However, few studies have experimented with the interactions of MNP with magnetic fields. Therefore, the aim of this research was to study the influence of an oscillating magnetic field (OMF) on polymeric monolithic columns with vinylated magnetic nanoparticles (VMNP) for capillary liquid chromatography (cLC). For this purpose, MNP were synthesized by coprecipitation of iron salts. The preparation of polymeric monolithic columns was performed by copolymerization and aggregation of VMNP. Taking advantage of the magnetic properties of MNP, the influence of parameters such as resonance frequency, intensity and exposure time of a OMF applied to the synthesized columns was studied. As a result, a better separation of a sample according to the measured parameters was obtained, so that a column resolution (Rs) of 1.35 was achieved. The morphological properties of the columns were evaluated by scanning electron microscopy (SEM). The results of the chromatographic properties revealed that the best separation of the alkylbenzenes sample occurs under conditions of 5.5 kHz and 10 min of exposure in the OMF. This study constitutes a first application in chromatographic separation techniques for future research in nanotechnology.
Diamond-like Nanocomposites (DLN) is a newly member in amorphous carbon (a:C) family. It consists of two or more interpenetrated atomic scale network structures. The amorphous silicon oxide (a:SiO) is incorporated within diamond-like carbon (DLC) matrix i.e. a:CH and both the network is interpenetrated by Si-C bond. Hence, the internal stress of deposited DLN film decreases remarkably compare to DLC. The diamond-like properties have come due to deform tetrahedral carbon with sp3 configuration and high ratio of sp3 to sp2 bond. The DLN has excellent mechanical, electrical, optical and tribological properties. Those properties of DLN could be varied over a wide range by changing deposition parameters, precursor and even post deposition treatment also. The range of properties are: Resistivity 10-4 to 1014 Ωcm, hardness 10–22 GPa, coefficient of friction 0.03-0.2, wear factor 0.2-0.4 10-7mm3/Nm, transmission Vis-far IR, modulus of elasticity 150-200 GPa, residual stress 200-300 Mpa, dielectric constant 3-9 and maximum operating temperature 600°C in oxygen environment and 1200°C in O2 free air. Generally, the PECVD method is used to synthesize the DLN film. The most common procedures used for investigation of structure and composition of DLN films are Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), HRTEM, FESEM and X-ray photo electron spectroscopy (XPS). Interest in the coating technology has been expressed by nearly every industrial segment including automotive, aerospace, chemical processing, marine, energy, personal care, office equipment, electronics, biomedical and tool and die or in a single line from data to beer in all segment of life. In this review paper, characterization of diamond-like nanocomposites is discussed and subsequently different application areas are also elaborated.
Copyright © by EnPress Publisher. All rights reserved.