Lynch KB, Ren J, Beckner MA, et al. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Analytica Chimica Acta 2019; 1046: 48–68.
Dores‐Sousa JL, Fernández‐Pumarega A, De Vos J, et al. Guidelines for tuning the macropore structure of monolithic columns for high‐performance liquid chromatography. Journal of Separation Science 2019; 42(2): 522–533.
Liu L, Yang C, Yan X. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. Journal of Chromatography A 2017; 1479: 137–144.
Wang R, Li W, Chen Z. Solid phase microextraction with poly (deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Analytica Chimica Acta 2018; 1018: 111–118.
Sharma G, Tara A, Sharma VD. Advances in monolithic silica columns for high-performance liquid chromatography. Journal of Analytical Science and Technology 2017; 8(1): 1–11.
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic interaction chromatography. Journal of Analytical Chemistry 2019; 74(5): 415–424.
Buszewski B, Szumski M. Study of bed homogenity of methacrylate-based monolithic columns for micro-HPLC and CEC. Chromatographia 2004; 60(1): S261–S267.
Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Analytical Chemistry 2015; 87(1): 250–273.
Poupart R, Grande D, Carbonnier B, et al. Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems. Progress in Polymer Science 2019; 96: 21–42.
Li Z, Rodriguez E, Azaria S, et al. Affinity monolith chromatography: A review of general principles and applications. Electrophoresis 2017; 38(22–23): 2837–2850.
Gama MR, Rocha FRP, Bottoli CBG. Monoliths: synthetic routes, functionalization and innovative analytical applications. TrAC Trends in Analytical Chemistry 2019; 115: 39–51.
Terborg L, Masini JC, Lin M, et al. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode. Journal of Advanced Research 2015; 6(3): 441–448.
Aqel A. Using of nanomaterials to enhance the separation efficiency of monolithic columns. Nanomaterials in Chromatography. Elsevier; 2018. p. 299–322.
Soriano ML, Zougagh M, Valcárcel M, et al. Analytical nanoscience and nanotechnology: Where we are and where we are heading. Talanta 2018; 177: 104–121.
Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM. Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. Journal of Chromatography A 2015; 1385: 77–84.
Barbosa-Canovas G. Food Engineering-Volume III. Washington: EOLSS Publications; 2009.
Aguilera-Díaz JD, Parra-Pérez A. Design and construction of a magnetic field generator with intensity, direction and frequency control (in Spanish) [Undergraduate thesis]. Bogotá: Universidad Santo Tomas de Aquino; 2015.
Prieto A, Pereda JA, González O. Opencourseware electricity and magnetism [Internet]. University of Cantabria; 2010. Available from: https://ocw.unican.es/course/view.php?id=197.
Tipler PA, Mosca G. Electricity and magnetism. In: Física para la ciencia y la tecnología. Barcelona-Bogotá: Reverté; 2005. p. 878–897.
Saien J, Bamdadi H, Daliri S. Liquid-liquid extraction intensification with magnetite nanofluid single drops under oscillating magnetic field. Journal of Industrial and Engineering Chemistry 2015; 21: 1152–1159.
Jiménez IR, Gorbeña JCR, Félix ST. [Influence of variable sine wave magnetic field of (22–52) khz and 100 milligauss magnetic induction, on the growth of Lactobacillus plantarum used as a probiotic in food (in Spanish). Biotempo 2017; 14(1): 49–55.
Petro M, Svec F, Fréchet JMJ. Molded continuous poly (styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes. Journal of Chromatography A 1996; 752(1–2): 59–66.
Yang C, Wang G, Lu Z, et al. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. Journal of Materials Chemistry 2005; 15(39): 4252–4257.
Yu Q, Dave RN, Zhu C, et al. Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE Journal 2005; 51(7): 1971–1979.
Van Ommen JR, Valverde JM, Pfeffer R. Fluidization of nanopowders: A review. Journal of Nanoparticle Research 2012; 14(3): 1–29.
Pantoja JMM. Microwave engineering: experimental techniques (in Spanish). Pearson Educación; 2002.
Rios A, Zougagh M. Recent advances in magnetic nanomaterials for improving analytical processes. TrAC Trends in Analytical Chemistry 2016; 84: 72–83.
Roig C. Validation of a high resolution liquid chromatography method (HPLC) for the determination of ivabradine tablets. Mem. Instituto de Investig. en Ciencias de la Salud 2012: 63–70.
Bose A. HPLC calibration process parameters in terms of system suitability test. Austin Chromatogr 2014; 1(2): 1–4.
Jiles DC, Atherton DL. Theory of ferromagnetic hysteresis. Journal of Applied Physics 1984; 55(6): 2115–2120.
Dadoo R, Zare RN, Yan C, et al. Advances in capillary electrochromatography: Rapid and high-efficiency separations of PAHs. Analytical Chemistry 1998; 70(22): 4787–4792.