By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
Identify and diagnosis of homogenous units and separating them and eventually planning separately for each unit are considered the most principled way to manage units of forests and creating these trustable maps of forest’s types, plays important role in making optimum decisions for managing forest ecosystems in wide areas. Field method of circulation forest and Parcel explore to determine type of forest require to spend cost and much time. In recent years, providing these maps by using digital classification of remote sensing’s data has been noticed. The important tip to create these units is scale of map. To manage more accurate, it needs larger scale and more accurate maps. Purpose of this research is comparing observed classification of methods to recognize and determine type of forest by using data of Land Cover of Modis satellite with 1 kilometer resolution and on images of OLI sensor of LANDSAT satellite with 30 kilometers resolution by using vegetation indicators and also timely PCA and to create larger scale, better and more accurate resolution maps of homogenous units of forest. Eventually by using of verification, the best method was obtained to classify forest in Golestan province’s forest located on north-east of country.
In today’s fast-paced digital world, generative AI, especially OpenAI’s ChatGPT, has become a game-changing technology with significant effects on education. This study examines public sentiment and discourse surrounding ChatGPT’s role in higher education, as reflected on social media platform X (formerly Twitter). Employing a mixed-methods approach, we conducted a thematic analysis using Leximancer and Voyant Tools and sentiment analysis with SentiStrength on a dataset of 18,763 tweets, subsequently narrowed to 5655 through cleaning and preprocessing. Our findings identified five primary themes: Authenticity, Integrity, Creativity, Productivity, and Research. The sentiment analysis revealed that 46.6% of the tweets expressed positive sentiment, 38.5% were neutral, and 14.8% were negative. The results highlight a general openness to integrating AI in educational contexts, tempered by concerns about academic integrity and ethical considerations. This study underscores the need for ongoing dialogue and ethical frameworks to responsibly navigate AI’s incorporation into education. The insights gained provide a foundation for future research and policy-making, aiming to enhance learning outcomes while safeguarding academic values. Limitations include the focus on English-language tweets, suggesting future research should encompass a broader linguistic and platform scope to capture diverse global perspectives.
Copyright © by EnPress Publisher. All rights reserved.