Journal Browser
Search
Mapping and analyzing the spatial pattern of farmland abandonment of Zhejiang Province using google earth engine based on multi-source data
Jianwen Wang
Journal of Geography and Cartography 2025, 8(3); https://doi.org/10.24294/jgc11545
Submitted:25 Feb 2025
Accepted:29 May 2025
Published:29 Dec 2025
Abstract

Land use as for human-circumstance interaction is as we all know changed the global land surface sharply and continuously. Farmland abandonment is the phenomenon of going extreme of marginal of land use, which exert positive and negative impacts on our living circumstances. In order to map the extent of farmland abandonment of Zhejiang Province, we try to use the geo-big data analysis platform to perform the massive data preprocessing and map the extent of farmland abandonment of the study area based on multi-source land use and land cover data. Then we execute landscape pattern analysis using landscape pattern analysis software and spatial auto-correlation (Moran’s I) analysis based on ArcGIS and Fragstats software. We found that the area of farmland is about 16.32% on account of all land use types, which is 1.89104 km2. While the whole area of FA is 1.72 × 108m2, and the farmland abandonment ratio is 1.65%. AF’s area is about 1.95 × 109m2, and the continuous cultivation ratio is 18.69%. The landscape fragmentation, landscape aggregation and landscape diversity of FA, AF and FL are different. At the same time, the spatial auto-correlation of FA and AF are dominant high congregation and low discrete. At last, we compared our calculated results with the existed research results which demonstrate our research does scientific convincible. We also make futural prospects prediction and show the research deficiency as well as bring out some policy implications based on our research, which means build proper land use management regulation and decrease the farmland abandonment on account of the premise of suitable land use policies.


© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP