The study of authoritarian leadership has undergone significant development, with researchers exploring its different dimensions and consequences. This leadership style, characterized by a top-down approach and centralized decision-making authority, has been extensively examined in psychology, organizational behavior, and management literature. Scholars have delved into the effects of authoritarian leadership on various aspects of organizations such as employee satisfaction, motivation levels, productivity rates, turnover rates, and team dynamics. The research landscape surrounding authoritarian leadership has witnessed a recent surge in interest as scholars strive to understand its intricate connections with different variables. The primary objective of this study is to conduct a comprehensive bibliometric analysis on authoritarian leadership, aiming to identify the key research areas, influential authors, prominent journals in the field, and citation patterns. To our knowledge, no bibliometric analysis on authoritarian leadership can be found in the Scopus database, highlighting the novelty of our research. Through a source-based examination of scholarly articles and their citations pertaining to authoritarian leadership, this analysis offers valuable insights into the current state of research in this domain. By focusing on publications from the past decade onwards, we aim to uncover trends and potential gaps within existing literature while also providing guidance for future research endeavors. Our research findings will provide valuable insights into the phenomenon of authoritarian leadership, contributing to a deeper understanding of its implications. By delving into this topic, we hope to pave the way for future studies and investigations in this field that can build upon our findings and expand knowledge even further.
In the dynamic landscape of modern education, it is essential to understand and recognize the psychological habits that underpin students’ learning processes. These habits play a crucial role in shaping students’ learning outcomes, motivation, and overall educational experiences. This paper shifts the focus towards a more nuanced exploration of these psychological habits in learning, particularly among secondary school students. We propose an innovative assessment model that integrates multimodal data analysis with the quality function deployment theory and the subjective-objective assignment method. This model employs the G-1-entropy value method for an objective evaluation of students’ psychological learning habits. The G-1-entropy method stands out for its comprehensive, objective, and practical approach, offering valuable insights into students’ learning behaviors. By applying this method to assess the psychological aspects of learning, this study contributes to educational research and informs educational reforms. It provides a robust framework for understanding students’ learning habits, thereby aiding in the development of targeted educational strategies. The findings of this study offer strategic directions for educational management, teacher training, and curriculum development. This research not only advances theoretical knowledge in the field of educational psychology but also has practical implications for enhancing the quality of education. It serves as a scientific foundation for educators, administrators, and policymakers in shaping effective educational practices.
The increase in energy consumption is closely linked to environmental pollution. Healthcare spending has increased significantly in recent years in all countries, especially after the pandemic. The link between healthcare spending, greenhouse gas emissions and gross domestic product has led many researchers to use modelling techniques to assess this relationship. For this purpose, this paper analyzes the relationship between per capita healthcare expenditure, per capita gross domestic product and per capita greenhouse gas emissions in the 27 EU countries for the period 2000 to 2020 using Error Correction Westerlund, and Westerlund and Edgerton Lagrange Multiplier (LM) bootstrap panel cointegration test. The estimation of model coefficients was carried out using the Augmented Mean Group (AMG) method adopted by Eberhardt and Teal, when there is heterogeneity and cross-sectional dependence in cross-sectional units. In addition, Dumitrescu and Hurlin test has been used to detect causality. The findings of the study showed that in the long run, per capita emissions of greenhouse gases have a negative effect on per capita health expenditure, except from the case of Greece, Lithuania, Luxembourg and Latvia. On the other hand, long-term individual co-integration factors of GDP per capita have a positively strong impact on health expenditure per capita in all EU countries. Finally, Dumitrescu and Urlin’s causality results reveal a significant one-way causality relationship from GDP per capita and CO2 emissions per capita to healthcare expenditure per capita for all EU countries.
With the rapid development of artificial intelligence (AI) technology, its application in the field of auditing has gained increasing attention. This paper explores the application of AI technology in audit risk assessment and control (ARAC), aiming to improve audit efficiency and effectiveness. First, the paper introduces the basic concepts of AI technology and its application background in the auditing field. Then, it provides a detailed analysis of the specific applications of AI technology in audit risk assessment and control, including data analysis, risk prediction, automated auditing, continuous monitoring, intelligent decision support, and compliance checks. Finally, the paper discusses the challenges and opportunities of AI technology in audit risk assessment and control, as well as future research directions.
Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China’s A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
Copyright © by EnPress Publisher. All rights reserved.