Objective: Standardizing image acquisition protocols and image quality across cameras is an important need in imaging, in particular in multi-center clinical trials and the use of image analysis and machine learning algorithms. The objective of this study was to examine the effect of ordered subset expectation maximization (OSEM) reconstruction parameters on the quantitative image quality of cardiac perfusion SPECT images in different typical SPECT cameras and therefore assess the need to change the parameter values across cameras. Methods: The analysis was carried out by comparing the defect contrast-to-noise ratio (CNR) at 12 OSEM subset-iteration combinations. Eight frames were reconstructed using the SIMIND Monte Carlo Simulation package. An activity of 370 MBq (10mCi) and projection acquisition interval of 20 seconds per projection were used. Attenuation (AC) and scatter corrections (SC) were performed in this study for all images. Results: The 16-2 subset-iteration combination yielded the highest CNR and defect contrast values for both cameras. The difference between CNR values for two cameras was found to be close to 5%. Conclusions: Monte Carlo simulations can be useful to investigate how quantitative image quality behaves with respect to reconstruction parameters and correction algorithms in a controlled environment. In this study, the use of different camera brands did not seem to significantly affect the lesion detectability. Further simulations with more extended range of parameters and camera brands may be conducted in the future to quantify further the variability between different brands of cameras.
Solar energy is a reliable and abundant resource for both heating and power generation. The current research examines how the novel class of nano-embedded Bees wax phase change materials (NEBPCMs) improves heat storage qualities. The synthetic NEBPCMs were subjected to experimental testing using, XRD, Bees wax and Al2O3 FESEM. A typical solar water heating system features a flat plate collector unit incorporating Bees Wax phase change material (NEBPCM) combined with varying concentrations of Al2O3 (0.01%, 0.015%, and 0.02%). The absorber plate surface is coated with a Nano-hybrid coating consisting of Black Paint, Al2O3, and additional Fe3O4 at a 2% concentration. Pure water is frequently used in these solar water heaters (SWH), with performance evaluations conducted using different Bees Wax and Al2O3 concentrations of NEBPCM (Bees Wax + Al2O3). The system’s efficiency is assessed across different flow rates (60, 90, and 120 kg/hr) and tilt angles (15, 30, and 45 degrees). This study aims to examine the feasibility of using PCMs to store solar energy for night time water heating, ensuring a continuous supply of hot water maximum efficiency achieved by using NEBPCM in solar water heater 52.26% at a flow rate of 120 Kg/hr, at angle of 45 degrees and Concentration 0.015%.
The article's proposed engineering uses are based on theories presented in the reviewed research articles and on findings from online investigations into companies that claim to use nanoengineering in their wares. Several pre-existing online consumer inventories and nanotechnology news were examined as part of the internet inquiry. The data about the nanoparticles (NP), or nanostructure, used in commercially available products comes from the remarks made by the manufacturer. Nanoengineered coating agents and textile additives are examples of commercial items developed for industrial clients that fall under the aforementioned uses.
In Nigeria, deforestation has led to an unimaginable loss of genetic variation within tree populations. Regrettably, little is known about the genetic variation of many important indigenous timber species in Nigeria. More so, the specific tools to evaluate the genetic diversity of these timber species are scarce. Therefore, this study developed species-specific markers for Pterygota macrocarpa using state-of-the-art equipment. Leaf samples were collected from Akure Forest Reserve, Ondo State, Nigeria. DNA isolation, quantification, PCR amplification, gel electrophoresis, post-PCR purification, and sequencing were done following a standardized protocol. The melting temperatures (TM) of the DNA fragments range from 57.5 ℃to 60.1 ℃ for primers developed from the MatK gene and 58.7 ℃ to 60.5 ℃ for primers developed from the RuBisCo gene. The characteristics of the ten primers developed are within the range appropriate for genetic diversity assessment. These species-specific primers are therefore recommended for population evaluation of Pterygota macrocarpa in Nigeria.
Plastic products are items that we use every day around us, and their replacement speed are very fast, so that to recycle waste plastic has become the focus of environmental problems. This study has proposed an optimized circular design for the recycle plant of waste plastic, therefore, and our proposed strategy is to build a new tertiary recycling plant to reduce the total generation amount of the derived solid plastic waste from ordinary and secondary recycling plants and the semi-finished products from secondary recycling plant. Results obtained from a real recycle plant has showed that to recycle the tertiary waste plastic in a tertiary recycling plant, the finished products produced from a secondary recycling plant accounts about 27% of ordinary waste plastic, and the semi-finished products that mainly is scrap hardware accounts about 1% of ordinary waste plastic. Other derived solid plastic waste accounts for 6% of ordinary plastic waste. Therefore, if the ordinary, secondary and tertiary recycle plant can be set all-in-one, it can reduce the total generation amount of derived solid plastic waste from 34% to 6%, without and with a tertiary recycling plant, respectively. It can also increase the operating income of the secondary recycle plant and the investment willingness of the new tertiary recycle plant.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
Copyright © by EnPress Publisher. All rights reserved.