Journal Browser
Search
Optimization of SWHs using nano Al2O3 embedded beeswax and 2% hybrid nano coating by the approach of Box-Behnken design
N.V. Narasimha Rao
N. Alagappan
CH V K N S N Moorthy
Markndeyulu Vuggirala
Characterization and Application of Nanomaterials 2025, 8(4); https://doi.org/10.24294/can11907
Submitted:17 Oct 2025
Accepted:06 Nov 2025
Published:25 Dec 2025
Abstract

Solar energy is a reliable and abundant resource for both heating and power generation. The current research examines how the novel class of nano-embedded Bees wax phase change materials (NEBPCMs) improves heat storage qualities. The synthetic NEBPCMs were subjected to experimental testing using, XRD, Bees wax and Al2O3 FESEM. A typical solar water heating system features a flat plate collector unit incorporating Bees Wax phase change material (NEBPCM) combined with varying concentrations of Al2O3 (0.01%, 0.015%, and 0.02%). The absorber plate surface is coated with a Nano-hybrid coating consisting of Black Paint, Al2O3, and additional Fe3O4 at a 2% concentration. Pure water is frequently used in these solar water heaters (SWH), with performance evaluations conducted using different Bees Wax and Al2O3 concentrations of NEBPCM (Bees Wax + Al2O3). The system’s efficiency is assessed across different flow rates (60, 90, and 120 kg/hr) and tilt angles (15, 30, and 45 degrees). This study aims to examine the feasibility of using PCMs to store solar energy for night time water heating, ensuring a continuous supply of hot water maximum efficiency achieved by using NEBPCM in solar water heater 52.26% at a flow rate of 120 Kg/hr, at angle of 45 degrees and Concentration 0.015%.

© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP