In response to the prevailing energy crisis, this research focuses on elevating the potential of lithium niobate (LN) thin films for advanced optoelectronic applications. Employing electron beam evaporation, films undergo precise annealing (700°C to 1100°C), revealing a structural evolution through X-ray diffraction—crystallite sizes transition from 69.34 nm (unannealed) to 47.90 nm (1100°C). Scanning electron microscopy captures the transformation from coarse grains to photonic crystal clusters, while energy dispersion X-ray analysis discloses LN's composition (97.27 wt.% oxygen, 2.73 wt.% niobium). Rutherford backscattering spectroscopy illustrates surface damage post-Helium ion implantation, proportionate to depth. UV-VIS spectrophotometry highlights a significant blue shift in the optical band gap (3.70 eV to 2.52 eV), with further reduction at 700°C (2.48 eV) and a climactic shift at 1100°C (2.68 eV). This study not only addresses the pressing energy crisis but also emphasizes the indispensable role of lithium niobate in shaping the future of optoelectronics. It provides insights into tailoring LN properties for sustainable advancements in optoelectronic devices, marking a crucial chapter in our collective journey towards energy resilience. The urgency of innovation in the face of global challenges is underscored, marking a crucial chapter in our collective journey towards energy resilience.
This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005–2013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs).
The rapid growth of portable electronics and electric vehicles has intensified the global demand for high-performance energy storage devices with superior power density, energy density, and long cycle life. Among transition metal oxide-based electrode materials with potential for energy storage, we report the development of MnO2–V2O5 nanocomposite electrodes for supercapacitor applications. Pure MnO2 and V2O5 were successfully fabricated via a simple and economical sol–gel method, while (MnO2)x–(V2O5)1−x (x = 1, 0.75, 0.50, and 0) nanocomposites were fabricated through an ex situ method. Analytical techniques, including X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, were employed to investigate the structural, morphological, and optical properties of the electrodes. Furthermore, the electrochemical properties were systematically analysed using cyclic voltammetry, galvanostatic charge–discharge measurements, and electrochemical impedance spectroscopy. The (MnO2)0.75–(V2O5)0.25 nanocomposite demonstrated a remarkable specific capacitance of 666 F/g at a current density of 0.5 A/g in 1 M KOH electrolyte. Additionally, the electrode material exhibited an energy density of 23 Wh/kg and a power density of 450 W/kg, while maintaining a capacitance retention of 95% after 1,500 cycles. The incorporation of V2O5 boosted the conductivity and significantly optimised the number of lattice defects. This work substantially reinforces the importance of metal oxide-based nanocomposites for future energy storage devices.
This study delves into the complex flow dynamics of magnetized bioconvective Ellis nanofluids, highlighting the critical roles of viscous dissipation and activation energy. By employing a MATLAB solver to tackle the boundary value problem, the research offers a thorough exploration of how these factors, along with oxytactic microorganism’s mobility, shape fluid behavior in magnetized systems. Our findings demonstrate that an increase in the magnetization factor leads to a decrease in both velocity and temperature due to enhanced interparticle resistance from the Lorentz force. Additionally, streamline analysis reveals that higher mixed convection parameters intensify flow concentration near surfaces, while increased slip parameters reduce shear stress and boundary layer thickness. Although isotherm analysis shows that higher Ellis fluid parameters enhance heat conduction, with greater porosity values promoting efficient thermal dissipation. These insights significantly advance our understanding of nanofluid dynamics, with promising implications for bioengineering and materials science, setting the stage for future research in this field.
Conversion of the ocean’s vertical thermal energy gradient to electricity via OTEC has been demonstrated at small scales over the past century. It represents one of the planet’s most significant (and growing) potential energy sources. As described here, all living organisms need to derive energy from their environment, which heretofore has been given scant serious consideration. A 7th Law of Thermodynamics would complete the suite of thermodynamic laws, unifying them into a universal solution for climate change. 90% of the warming heat going into the oceans is a reasonably recoverable reserve accessible with existing technology and existing economic circumstances. The stratified heat of the ocean’s tropical surface invites work production in accordance with the second law of thermodynamics with minimal environmental disruption. TG is the OTEC improvement that allows for producing two and a half times more energy. It is an endothermic energy reserve that obtains energy from the environment, thereby negating the production of waste heat. This likewise reduces the cost of energy and everything that relies on its consumption. The oceans have a wealth of dissolved minerals and metals that can be sourced for a renewable energy transition and for energy carriers that can deliver ocean-derived power to the land. At scale, 31,000 one-gigawatt (1-GW) TG plants are estimated to displace about 0.9 W/m2 of average global surface heat into deep water, from where, at a depth of 1000 m, unconverted heat diffuses back to the surface and is available for recycling.
The efficiencies and performance of gas turbine cycles are highly dependent on parameters such as the turbine inlet temperature (TIT), compressor inlet temperature (T1), and pressure ratio (Rc). This study analyzed the effects of these parameters on the energy efficiency, exergy efficiency, and specific fuel consumption (SFC) of a simple gas turbine cycle. The analysis found that increasing the TIT leads to higher efficiencies and lower SFC, while increasing the To or Rc results in lower efficiencies and higher SFC. For a TIT of 1400 ℃, T1 of 20 ℃, and Rc of 8, the energy and exergy efficiencies were 32.75% and 30.9%, respectively, with an SFC of 187.9 g/kWh. However, for a TIT of 900 ℃, T1 of 30 ℃, and Rc of 30, the energy and exergy efficiencies dropped to 13.18% and 12.44%, respectively, while the SFC increased to 570.3 g/kWh. The results show that there are optimal combinations of TIT, To, and Rc that maximize performance for a given application. Designers must consider trade-offs between efficiency, emissions, cost, and other factors to optimize gas turbine cycles. Overall, this study provides data and insights to improve the design and operation of simple gas turbine cycles.
Copyright © by EnPress Publisher. All rights reserved.