Journal Browser
Search
Electric-driven underwater thermal energy storage: Commercial utilization of surplus fluctuating wind power for district heating
Fabien Schultz
Leif-Alexander Garbe
Kandace Baez
Heralt Schöne
Journal of Infrastructure Policy and Development 2025, 9(4); https://doi.org/10.24294/jipd9013
Submitted:06 Sept 2024
Accepted:25 Nov 2025
Published:19 Dec 2025
Abstract

This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 20052013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs). 

References
1. Becker D, 2013, Positionspapier zur Weiterentwicklung des Strommarkts - Energiekonzept der Bundesregierung. Mitglied des Deutschen Bundestages, Berlin.
2. Rummich E, 2009, Energiespeicher - Grundlagen, Komponenten, Systeme und Anwendungen. Expert Verlag, Renningen, Germany.
3. Chen, H., Cong, T. N., Yang, W., et al. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19(3), 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014
4. Khartchenko N, 1997, Advanced Energy Systems. Institute of Energy Engineering & Technology University, Berlin.
5. Rebhan, E. (Ed.). (2002). Energiehandbuch. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55451-3
6. Sharma, A., Tyagi, V. V., Chen, C. R., et al. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345. https://doi.org/10.1016/j.rser.2007.10.005
7. Abedin A, Rosen M, 2011, A Critical Review of Thermochemical Energy Storage Systems. The Open Renewable Energy Journal, 4: 42-46. https://doi.org/10.2174/1876387101004010042
8. Hasnain S, 1998, Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques. Energy Convers Mgmt, 39: 1127-1138. https://doi.org/10.1016/S0196-8904(98)00025-9
9. Institut für Regenerative Energietechnik, 2009, Abstract Studie - Thermische Energiespeicher zur effizienten Nutzung erneuerbaren Energien / Überschusswärme und ihre Umsetzung in Thüringen. LEG Thüringen mbH, Erfurt.
10. Hasnain S, 1993, Energex '93. Proc. 12th Energy Technical Conference, USA.
11. International Energy Agency (IEA), 2008, Compact Thermal Energy Storage: Material Development and System Integration. IEA Solar Heating and Cooling Programme, Annex Text (Draft), Task 42 / Annex 28.
12. George A, 1989, Hand Book of Thermal Design. In: Guyer C, editor. Phase Change Thermal Storage Materials. McGraw Hill Book Co. [Chapter 1].
13. Arteconi, A., Hewitt, N. J., & Polonara, F. (2013). Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems. Applied Thermal Engineering, 51(1–2), 155–165. https://doi.org/10.1016/j.applthermaleng.2012.09.023
14. Deutsche Energie-Agentur (dena) GmbH, 2010, Analyse der Notwendigkeit des Ausbaus von Pumpspeicherwerken und anderen Stromspeichern zur Integration der erneuerbaren Energien (PSW-Integration EE). dena, Berlin.
15. German Federal Environment Ministry, 2009, Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland. BMU, Berlin.
16. Mennillo, G., Schlenzig, T., & Friedrich, E. (Eds.). (2012). Balanced Growth. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-24653-1
17. European Transmission System Operators (ETSO), 2013, Network Presentation and Tasks. European Network of Transmission System Operators for Electricity (ENTSO-E). (Retrieved 22 July 2013).
18. DNV KEMA Energy & Sustainability, 2013, Potential for Smart Electric Thermal Storage - Contributing to a Low Carbon Energy System. KEMA Nederland B.V., Arnhem, The Netherlands.
19. German Federal Ministry of Economy and Technology, 2011, Stromversorgung: Datenblatt. BMWi. (Retrieved 23 July 2013).
20. German Energy Agency (Dena), 2012, Energy Data BMWi. AG Energiebilanzen e.V., Database (dated 12/2011).
21. Deutsche WindGuard GmbH, 2012, Status des Windenergieausbaus in Deutschland. Bundesverband Windenergie (BWE) and VDMA Power Systems, Varel.
22. Popp M, 2010, Speicherbedarf bei einer Stromversorgung mit erneuerbaren Energien. TU Carolo-Wilhelmina zu Braunschweig, Dissertation, Braunschweig. https://doi.org/10.1007/978-3-642-01927-2
23. Institut für Solare Energieversorgungstechnik (ISET), 2008, Wind Energy Report Germany 2008 - Deutscher Windmonitor. ISET, Kassel.
24. German Federal Network Agency (BNetzA), 2013a, Power Plant Catalog (Kraftwerksliste der Bundesnetzagentur). BNetzA, Bonn, Germany (27 March 2013).
25. Zalba B, Marin J, Cabeza L, et al., 2003, Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl Therm Eng, 23: 251-283. https://doi.org/10.1016/S1359-4311(02)00192-8
26. Paatero J, Lund P, 2005, Effect of Energy Storage on Variations in Wind Power. Wind Energy, 8: 421-441. https://doi.org/10.1002/we.151
27. German Federal Ministry of Economy and Technology, 2013, Energy Data - Energiedaten - Ausgewählte Grafiken. BMWi, Berlin.
28. German Federal Association of Wind Energy (BWE), 2012a, Studie: Abschätzung der Bedeutung des Einspeisemangements nach § 11 EEG und § 13 Abs. 2 EnWG - Auswirkungen auf die Windenergieerzeugung in den Jahren 2010 und 2011. BWE, Berlin.
29. German Federal Association of Wind Energy (BWE), 2011, Studie: Abschätzung der Bedeutung des Einspeisemangements nach EEG - Auswirkungen auf die Windenergieerzeugung in den Jahren 2009 und 2010. BWE, Berlin.
30. German Federal Association of Wind Energy (BWE), 2012b, Kurzstudie: Bewertung von Einspeisenetzen. BWE, Berlin.
31. Desgrosseilliers, L., Whitman, C. A., Groulx, D., et al. (2013). Dodecanoic acid as a promising phase-change material for thermal energy storage. Applied Thermal Engineering, 53(1), 37–41. https://doi.org/10.1016/j.applthermaleng.2012.12.031
32. Chaudhari V, Rathod M, Chaudhari K, 2013, Stearid Acid as Phase Change Material: Thermal Reliability Test and Compatibility With Some Construction Materials. International Journal of Engineering Research & Technology, 2.
33. Sari A, Kaygusuz K, 2006, Thermal Energy Storage Characteristics of Myristic and Stearic Acids Eutectic Mixture for Low-Temperature Heating Applications. Chinese Journal of Chemical Engineering, 14: 270-275. https://doi.org/10.1016/S1004-9541(06)60070-0
34. Agyenim, F., Hewitt, N., Eames, P., et al. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14(2), 615–628. https://doi.org/10.1016/j.rser.2009.10.015
35. German Federal Network Agency (BNetzA), 2013b, Bericht zum Zustand der leistungsgebundenen Energieversorgung im Winter 2012/2013. BNetzA
36. Deutsche Industrie- und Handelskammer (DIHK), 2012, Faktenpapier Strompreise in Deutschland - Bestandteile, Entwicklungen, Strategien. DIHK
37. Fraunhofer Institute for Solar Energy Systems (ISE), 2012, Studie: Stromentstehungskosten Erneuerbare Energien. ISE.
38. German Federal Environment Ministry (BMU), 2012, Erneuerbare Energien in Zahlen - Nationale und Internationale Entwicklung. BMU.
39. Der Spiegel-Verlag, 2010, Windiges Minus. Magazine Spiegel, 10.
40. European Energy Exchange (EEX), 2012, Index Description. EEX.
41. International Federation of Association Football (FIFA), 2007, Fussballstadien - Technische Empfehlungen und Anforderungen. Fédération Internationale de Football Association.
42. Ataer Ö, 2009, Study of Thermal Energy. Energy Storage Systems, 1: 97-116.
43. Wagner, W., & Pruß, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2), 387–535. https://doi.org/10.1063/1.1461829
44. Stephan, K., & Mayinger, F. (1998). Thermodynamik. In Springer-Lehrbuch. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-13213-5
45. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, 1997, VDI-Wärmeatlas - Berechnungsblätter für den Wärmeübergang. Springer, New York.
46. Langeheinecke K, Jany P, Sapper E, 2001, Thermodynamik für Ingenieure - Ein Lehr- und Arbeitsbuch für das Studium. Friedr. Vieweg & Sohn Verlagsgesellschaft, Germany.
47. Shah LJ, Furbo S, 2003, Entrance Effects in Solar Storage Tanks. Solar Energy, 75(4): 337-348. https://doi.org/10.1016/j.solener.2003.04.002
48. Dincer I, Rosen M, 2002, Thermal Energy Storage: Systems and Applications. Wiley, New York. https://doi.org/10.1016/S0378-7788(01)00126-8
49. Babay S, Bougettaia H, Bechki D, et al., 2013, Review on Thermal Energy Storage Systems. Department of Physics, LENREZA, thesis, Quargla University.
50. Oladunjoye M, Sanuade O, 2012, Thermal Diffusivity, Thermal Effusivity and Specific Heats of Soils in Olorunsogo Powerplant, Southwestern Nigeria. IJRRAS, 13(2): 2. https://doi.org/10.5402/2012/591450
51. Hahne E, 2009, Storage of Sensible Heat. Energy Storage Systems, 1: 117-147.
52. Kretzschmar H, Kraft I, 2009, Kleine Formelsammlung Technische Thermodynamik. Carl Hanser Verlag, Germany.
53. Schultz F, 2013, Römpp Chemistry Encyclopedia. Georg Thieme Verlag KG, Germany.
54. Lane, G. A. (1980). Low temperature heat storage with phase change materials. International Journal of Ambient Energy, 1(3), 155–168. https://doi.org/10.1080/01430750.1980.9675731
55. Baumann, H., & Heckenkamp, J. (1997). Latentwärmespeicher. Nachrichten Aus Chemie, Technik Und Laboratorium, 45(11), 1075–1081. Portico. https://doi.org/10.1002/nadc.199700023
56. Abhat A, 1983, Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials. Solar Energy, 30: 313-332. https://doi.org/10.1016/0038-092X(83)90186-X
57. Naumann, R., & Emons, H.-H. (1989). Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. Journal of Thermal Analysis, 35(3), 1009–1031. https://doi.org/10.1007/bf02057256
58. Lindner F, 1996, Wärmespeicherung mit Salzen und Salzhydraten. KI Luft- und Kältetechnik, 10: 462-467.
59. Jing L, Zhongliang L, Chongfang M, 2007, An Experimental Study on the Stability and Reliability of the Thermal Properties of Barium Hydroxide Octahydrate as a Phase Change Material, thesis, Beijing University of Technology.
60. Merck KGaA, 2013, Product Data Sheet - Barium Hydroxide Octahydrate, Purest. Merck KGaA, Germany.
61. Carl Roth GmbH, 2012, Barium Hydroxide Octahydrate ≥98%, p.a., ISO - Safety Data Sheet Pursuant to Act (EC) No 1907/2006. Carl Roth GmbH.
62. German Federal Ministry for Environment, Nature Conservation and Nuclear Safety, 2013, Umgang Mit Wassergefährdenden Stoffen. Federal Ministry for Environment, Nature Conservation and Nuclear Safety.
63. Marx H, 2010, Wärmespeicher Auf Salzbasis. K-UTEC AG Salt Technologies.
64. Oberpaul P, 2002, Latentwärmespeicher - Funktionsprinzip Und Anwendungsbereiche, thesis, University of Bayreuth - Physical Chemistry.
65. Hörmansdörfer G, 1990, Latentwärmespeichermittel Und Deren Anwendung. European Patent EP0402304 A1.
66. Hörmansdörfer G, 1996, Speichersalz-Mischungen. European Patent EP0531464 B1.
67. Hansen A, Jackson A, 2005, High Performance Polypropylene Thermal Insulation for High Temperature and Deep Water Applications. Bredero Shaw Norway AS, Thermotite Division.
68. Price B, Hansen AB, Rydin C, 2002, Development and Qualification of Novel Thermal Insulation Systems for Deepwater Flowlines and Risers Based on Polypropylene. Offshore Technology Conference (OTC 14121). https://doi.org/10.4043/14121-MS
69. Fisch N, Bodmann M, Kühl L, Saße C, Schnürer H, 2005, Wärmespeicher. Solarpraxis AG.
70. INEOS, 2010, Typical Engineering Properties of Polypropylene. INEOS Olefins & Polymers USA.
71. Verein Deutscher Ingenieure eV, 2013, VDI 2067 - Wirtschaftlichkeit Gebäudetechnischer Anlagen. VDI eV.
72. Deutsche Auftragsagentur (DAA), 2013, Durchschnittlicher Stromverbrauch/Gasverbrauch Warmwasser. DAA.
73. Offel T, 2013, Warmwasser Durch Heizöl. Energiesparen im Haushalt.
74. Statista GmbH, 2013, Durchschnittlicher Preis Für Leichtes Heizöl in Den Monaten Juni 2012 Bis Juni 2013 (Cent Pro Liter). Statista GmbH.
75. Verivox GmbH, 2013, Verivox - Verbraucherpreisindex Gas. Verivox GmbH.
76. KWH Preis UG, 2013, Average Space Heating Costs in Private Households in Germany. KWH Preis UG.
77. Deutsches Statistisches Bundesamt (DESTATIS), 2009, Zuhause in Deutschland - Ausstattung Und Wohnsituation Privater Haushalte. DESTATIS.
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP