The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
Context: Noise in the work environment, in all types of productive activities, represents a hazard and has not really been valued in its real dimension. Little has been seen that stakeholders have determined the urgency of managing noise control programs. Therefore, losses resulting from medical treatment and absenteeism, represented in health care and social services, result in hidden work-related costs that directly affect the gross domestic product in any country.
Method: This article compiles different case studies from around the world. The studies were divided for review into general studies on the effects of workforce noise and then particularized according to the effects of industrial noise on workers’ health. At a control level, the assessment and measurement of noise is defined through the use of tools such as noise maps and their respective derivations, in addition to spatial databases.
Results: According to the collection of information and its analysis, we observe that in the medium term, the economies will be diminished in an important percentage due to the consequences generated by the exposure to noise. Specific information can be found in the development of the article.
Conclusions: The data provided by the case studies point to the need for Colombia, a country that is no stranger to this phenomenon, and which additionally has the great disadvantage of not having significant studies in the field of noise analysis, should strengthen studies based on spatial data as a mechanism for measurement and control.
Financing: Fundación universitaria Los Libertadores.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
In recent years, the pathological diagnosis of glomerular diseases typically involves the study of glomerular his-to pathology by specialized pathologists, who analyze tissue sections stained with Periodic Acid-Schiff (PAS) to assess tissue and cellular abnormalities. In recent years, the rapid development of generative adversarial networks composed of generators and discriminators has led to further developments in image colorization tasks. In this paper, we present a generative adversarial network by Spectral Normalization colorization designed for color restoration of grayscale images depicting glomerular cell tissue elements. The network consists of two structures: the generator and the discriminator. The generator incorporates a U-shaped decoder and encoder network to extract feature information from input images, extract features from Lab color space images, and predict color distribution. The discriminator network is responsible for optimizing the generated colorized images by comparing them with real stained images. On the Human Biomolecular Atlas Program (HubMAP)—Hacking the Kidney FTU segmentation challenge dataset, we achieved a peak signal-to-noise ratio of 29.802 dB, along with high structural similarity results as other colorization methods. This colorization method offers an approach to add color to grayscale images of glomerular cell tissue units. It facilitates the observation of physiological information in pathological images by doctors and patients, enabling better pathological-assisted diagnosis of certain kidney diseases.
This research looks into the differences in technological practices across Gen-X, Gen-Y, and Gen-Z employees in the workplace, with an emphasis on motivation, communication, collaboration, and productivity gaps. The study uses a systematic literature review to identify factors that contribute to these variations, taking into account each generation’s distinct experiences, communication methods, working attitudes, and cultural backgrounds. Bridging generational gaps, providing ongoing training, and incorporating cross-generational and technology-enhanced practices are all required in today’s workplace. This study compares the dominating workplace generations, Gen-X and Gen-Y, with the emerging Gen-Z. A review of the literature from 2010 to 2023, which was narrowed down from 1307 to 20 significant studies, emphasizes the importance of organizational management adapting to generational changes in order to increase productivity and maintain a healthy workplace. The study emphasizes the need of creating effective solutions for handling generational variations in workplace.
Copyright © by EnPress Publisher. All rights reserved.