The persistence of coastal ecosystems is jeopardized by deforestation, conversion, and climate change, despite their capacity to store more carbon than terrestrial vegetation. The study’s objectives were to investigate how spatiotemporal changes impacted blue carbon storage and sequestration in the Satkhira coastal region of Bangladesh over the past three decades and, additionally to assess the monetary consequences of changing blue carbon sequestration. For analyzing the landscape change (LSC) patterns of the last three decades, considering 1992, 2007, and 2022, the LSC transformations were evaluated in the research area. Landsat 5 of 1992 and 2007, and Landsat 8 OLI-TIRS multitemporal satellite images of 2022 were acquired and the Geographical Information System (GIS), Remote Sensing (RS) techniques were applied for spatiotemporal analysis, interpreting and mapping the output. The spatiotemporal dynamics of carbon storage and sequestration of 1992, 2007, and 2022 were evaluated by the InVEST carbon model based on the present research years. The significant finding demonstrated that anthropogenic activity diminished vegetation cover, vegetation land decreased by 7.73% over the last three decades, and agriculture land converted to mariculture. 21.74% of mariculture land increased over the last 30 years, and agriculture land decreased by 12.71%. From 1992 to 2022, this constant LSC transformation significantly changed carbon storage, which went from 11,706.12 Mega gram (Mg) to 9168.03 Mg. In the past 30 years, 2538.09 Mg of carbon has been emitted into the atmosphere, with a combined market worth of almost 0.86 million USD. The findings may guide policymakers in establishing a coastal management strategy that will be beneficial for carbon storage and sequestration to balance socioeconomic growth and preserve numerous environmental services.
Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
Copyright © by EnPress Publisher. All rights reserved.