1. Bertram C, Quaas M, Reusch TBH, et al. The blue carbon wealth of nations. Nature Climate Change. 2021; 11(8): 704–709. doi: 10.1038/s41558-021-01089-4
2. Bindu G, Rajan P, Jishnu ES, et al. Carbon stock assessment of mangroves using remote sensing and geographic information system. Egyptian Journal of Remote Sensing and Space Science. 2020; 23(1): 1–9. doi:10.1016/j.ejrs.2018.04.006
3. Harishma KM, Sandeep S, Sreekumar VB. Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecological Processes. 2020; 9(1). doi: 10.1186/s13717-020-00227-8
4. Taillardat P, Friess DA, Lupascu M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters. 2018; 14(10): 20180251. doi: 10.1098/rsbl.2018.0251
5. Atchison J. Green and Blue Infrastructure in Darwin; Carbon Economies and the Social and Cultural Dimensions of Valuing Urban Mangroves in Australia. Urban Science. 2019; 3(3): 86. doi:10.3390/urbansci3030086
6. Aljenaid S, Abido M, Redha GK, et al. Assessing the spatiotemporal changes, associated carbon stock, and potential emissions of mangroves in Bahrain using GIS and remote sensing data. Regional Studies in Marine Science. 2022; 52: 102282. doi: 10.1016/j.rsma.2022.102282
7. Zhao C, Fang C, Gong Y, et al. The economic feasibility of Blue Carbon cooperation in the South China Sea region. Marine Policy. 2020; 113: 103788. doi: 10.1016/j.marpol.2019.103788
8. Steven ADL, Vanderklift MA, Bohler-Muller N. A new narrative for the Blue Economy and Blue Carbon. Journal of the Indian Ocean Region. 2019; 15(2): 123–128. doi: 10.1080/19480881.2019.1625215
9. Jiezzelle V, Nesperos C, Mico C, et al. Assessment of blue carbon stock of mangrove vegetation in Infanta; Quezon; Philippines. Ecosystems and Development Journal. 2021; 11(1–2): 48–60.
10. Carr EW, Shirazi Y, Parsons GR, et al. Modeling the Economic Value of Blue Carbon in Delaware Estuary Wetlands: Historic Estimates and Future Projections. Journal of Environmental Management. 2018; 206: 40–50. doi: 10.1016/j.jenvman.2017.10.018
11. Sudirman N, Helmi M, Salim HL. Geospatial Modeling of Blue Carbon Ecosystem Coastal Degradation in Jakarta Bay. Indonesian Journal of Oceanography. 2019; 1(1): 80–92. doi: 10.14710/ijoce.v1i1.6266
12. Islam MM, Shamsuddoha M. Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ Science Policy. 2018; 87(12): 45–54. doi:10.1016/j.envsci.2018.05.014
13. Whisnant R, Reyes A. Blue Economy for Business in East Asia: Towards an Integrated Understanding of Blue Economy. Quezon City; Philippines: Partnerships in Environmental Management for the Seas of East Asia (PEMSEA); 2015.
14. Sejati AW, Buchori I, Kurniawati S, et al. Quantifying the impact of industrialization on blue carbon storage in the coastal area of Metropolitan Semarang, Indonesia. Applied Geography. 2020; 124: 102319. doi: 10.1016/j.apgeog.2020.102319
15. Walcker R, Gandois L, Proisy C, et al. Control of “blue carbon” storage by mangrove ageing: Evidence from a 66‐year chronosequence in French Guiana. Global Change Biology. 2018; 24(6): 2325–2338. doi: 10.1111/gcb.14100
16. Pechanec V, Purkyt J, Benc A, et al. Modelling of the carbon sequestration and its prediction under climate change. Ecological Informatics. 2018; 47: 50–54. doi:10.1016/j.ecoinf.2017.08.006
17. Moritsch MM, Young M, Carnell P, et al. Estimating blue carbon sequestration under coastal management scenarios. Science of The Total Environment. 2021; 777: 145962. doi: 10.1016/j.scitotenv.2021.145962
18. Pekkarinen A. Global Forest Resources Assessment 2020. Global Forest Resources Assessment 2020. Available from: https://openknowledge.fao.org/handle/20.500.14283/ca8753en. (accessed on 25 December 2025). doi: 10.4060/ca8753en
19. Giri RKKV; Mandla VR. Study and evaluation of carbon sequestration using remote sensing and GIS: A review on various techniques. International Journal of Civil Engineering and Technology. 2017; 8(4): 287–300.
20. Zheng Y, Takeuchi W. Quantitative Assessment and Driving Force Analysis of Mangrove Forest Changes in China from 1985 to 2018 by Integrating Optical and Radar Imagery. ISPRS International Journal of Geo-Information. 2020; 9(9): 513. doi: 10.3390/ijgi9090513
21. Ma T, Li X, Bai J, et al. Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Science of The Total Environment. 2019; 655: 741–750. doi: 10.1016/j.scitotenv.2018.11.287
22. Mahmud I, Mia AJ, Uddin R, et al. Assessment on Seasonal Variations in Waterlogging Using Remote Sensing and Gis Techniques in Satkhira District in Bangladesh. Barisal University Journal Part 1. 2017; 4(1): 67–80.
23. BMD. Temperature Data. Bangladesh Meteorological Department. 2022. Available online: https://www.bmd.gov.bd/ (accessed on 25 December 2025)
24. Islam SkM, Naher N, Roy N, et al. Agricultural Adaptation Options against Adverse Effect of Climate Change in Shyamnagar Upazila in the Satkhira District, Bangladesh. Asian Journal of Research in Agriculture and Forestry. 2019; 2(3): 1–12. doi: 10.9734/ajraf/2018/46438
25. Young NE, Anderson RS, Chignell SM, et al. A survival guide to Landsat preprocessing. Ecology. 2017; 98(4): 920–932. doi: 10.1002/ecy.1730
26. Sun Z, Ma R, Wang Y. Using Landsat data to determine land use changes in Datong basin, China. Environmental Geology. 2008; 57(8): 1825–1837. doi: 10.1007/s00254-008-1470-2
27. Mahmud KH, Abid SB, Ahmed R. Development of a Climate Classification Map for Bangladesh Based on Koppen’s Climatic Classification. Social Sciences. 2018; XXXIX.
28. Tan KC, Lim HS, MatJafri MZ, et al. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences. 2009; 60(7): 1509–1521. doi: 10.1007/s12665-009-0286-z
29. Ara S, Alif MAUJ, Islam KMA. Impact of Tourism on LULC and LST in a Coastal Island of Bangladesh: A Geospatial Approach on St. Martin’s Island of Bay of Bengal. Journal of the Indian Society of Remote Sensing. 2021; 49(10): 2329–2345. doi: 10.1007/s12524-021-01389-4
30. Ashikur MR, Rupom RS, Sazzad MH. A remote sensing approach to ascertain spatial and temporal variations of seawater quality parameters in the coastal area of Bay of Bengal, Bangladesh. Remote Sensing Applications: Society and Environment. 2021; 23: 100593. doi: 10.1016/j.rsase.2021.100593
31. Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 2009; 113(5): 893–903. doi: 10.1016/j.rse.2009.01.007
32. Alam A, Bhat MS, Maheen M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal. 2019; 85(6): 1529–1543. doi: 10.1007/s10708-019-10037-x
33. Cheema MJM, Bastiaanssen WGM. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agric Water Manag. 2010; 97(10): 1541–1552. doi:10.1016/j.agwat.2010.05.009
34. Olofsson P, Foody GM, Stehman SV, et al. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment. 2013; 129: 122–131. doi: 10.1016/j.rse.2012.10.031
35. Adelisardou F, Zhao W, Chow R, et al. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). International Journal of Environmental Science and Technology. 2021; 19(7): 5929–5944. doi: 10.1007/s13762-021-03676-6
36. Sharp. R, Nelson E, Ennaanay D, et al. InVEST user guide. Stanford (CA): Natural Capital Project, Stanford University; Published online 2015. Available from: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html. (accessed on 25 December 2025)
37. Rahman MdS, Akter S. Carbon Forestry: Scope and Benefit in Bangladesh. Journal of Forest and Environmental Science. 2013; 29(4): 249–256. doi:10.7747/jfs.2013.29.4.249