This study conducts a systematic review to explore the applications of Artificial Intelligence (AI) in mobile learning to support indigenous communities in Malaysia. It also examines the AI techniques used more broadly in education. The main objectives of this research are to investigate the role of Artificial Intelligence (AI) in support the mobile learning and education and provide a taxonomy that shows the stages of process that used in this research and presents the main AI applications that used in mobile learning and education. To identify relevant studies, four reputable databases—ScienceDirect, Web of Science, IEEE Xplore, and Scopus—were systematically searched using predetermined inclusion/exclusion criteria. This screening process resulted in 50 studies which were further classified into groups: AI Technologies (19 studies), Machine Learning (11), Deep Learning (8), Chatbots/ChatGPT/WeChat (4), and Other (8). The results were analyzed taxonomically to provide a structured framework for understanding the diverse applications of AI in mobile learning and education. This review summarizes current research and organizes it into a taxonomy that reveals trends and techniques in using AI to support mobile learning, particularly for indigenous groups in Malaysia.
This paper discusses the concept of creating a new reality using the approaches of smart cities to develop eco-cities, in which the necessary balance between nature and progress can be maintained. The authors propose that the concept of smart cities should be used as a tool for the creation of eco-cities, and argue that the positive synergies between the two will be strongest if the smart concept acts as a tool for the creation of eco. The core elements of a smart eco-city are identified as smart sustainable use of resources, a smart sustainable healthy community, and a smart sustainable economy. The results of the article were the foundation for the development concept for Vision Bratislava 2050—the vision and strategy for the development of the capital of the Slovak Republic. The authors also discuss the challenges of transforming cities into smart eco-formats, including the need for digital resilience in the face of potential cataclysms. They suggest that this is a promising area for further research into the concept of smart eco-cities.
This study employs logistic regression to investigate determinants influencing active living among elderly individuals, with “Active Living” (1 = Active, 0 = Inactive) as the dependent variable. Analysing data from 500 participants, findings reveal significant associations between active living and variables such as chronic conditions (OR = 0.29, p < 0.001), mental well-being (OR = 1.57, p < 0.001), social support (OR = 5.75, p < 0.001), access to parks/recreational facilities (OR = 2.59, p < 0.001), income levels (OR = 1.82, p = 0.003), cultural attitudes (OR = 2.72, p < 0.001), and self-efficacy (OR = 2.01, p < 0.001). These findings highlight the complex interplay of factors influencing active living among elderly populations. Recommendations include implementing targeted interventions to manage chronic conditions, enhance mental well-being, strengthen social networks, improve access to recreational spaces, provide economic support for fitness activities, promote positive cultural attitudes towards aging, and empower older adults through self-efficacy programs. Such interventions are crucial for promoting healthier aging and fostering sustained engagement in physical activity among older adults.
The technological development and the rise of artificial intelligence are driving a significant transformation of the labor market. The technological unemployment predicted by Keynes poses challenges for the global labor market that require new solutions. Basic income research has become a significant field of study, attracting attention from various disciplines such as political science, law, economics, and sociology. The aim of this paper is to explore on the basis of a literature review, what factors influence the support for basic income among the population. A systematic literature review based on the Web of Science and Scopus databases, after screening 2623 publications, identified 23 articles that contained findings relevant to the research question. A significant number of authors (12/23) analyzed data from the same source, the European Social Survey 2016 (ESS Round 8, 2020), conducted in 2016, first published in 2017 and updated several times since then. The paper shows that the study of the topic has a strong European focus. The social, economic, social and cultural diversity of European countries makes these studies important from a European and EU perspective, but from an international perspective, further research on the topic is needed.
In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
Copyright © by EnPress Publisher. All rights reserved.