Moorthy J, Gandhi UD. A Survey on Medical Image Segmentation Based on Deep Learning Techniques. Big Data and Cognitive Computing. 2022; 6(4): 117. doi: 10.3390/bdcc6040117
Kaur A, Singh Y, Neeru N, et al. A Survey on Deep Learning Approaches to Medical Images and a Systematic Look up into Real-Time Object Detection. Archives of Computational Methods in Engineering. 2021; 29(4): 2071-2111. doi: 10.1007/s11831-021-09649-9
Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data. 2021; 8(1). doi: 10.1186/s40537-021-00444-8
Rodríguez R, Mondeja BA, Valdés O, et al. SARS-CoV-2: enhancement and segmentation of high-resolution microscopy images—Part I. Signal, Image and Video Processing. 2021; 15(8): 1713-1721. doi: 10.1007/s11760-021-01912-7
Rodríguez R, Mondeja BA, Valdes O, et al. SARS-CoV-2: theoretical analysis of the proposed algorithms to the enhancement and segmentation of high-resolution microscopy images—Part II. Signal, Image and Video Processing. 2022; 16(3): 595-604. doi: 10.1007/
Basu A, Senapati P, Deb M, et al. A survey on recent trends in deep learning for nucleus segmentation from histopathology images. Evolving Systems. 2023; 15(1): 203-248. doi: 10.1007/s12530-023-09491-3
Yang T, Luo Y, Ji W, et al. Advancing biological super-resolution microscopy through deep learning: a brief review. Biophysics Reports. 2021; 7(4): 253. doi: 10.52601/bpr.2021.210019
Rodríguez R, Sossa JH. Mathematical Techniques for Biomedical Image Segmentation. Encyclopedia of Biomedical Engineering. Published online 2019: 64-78. doi: 10.1016/b978-0-12-801238-3.99989-6
Ledón T, et al. Vibrio cholerae O139: Emergence, evolution, and genetic structure of CTXΦ (Spanish). Revista CENIC Ciencias Biológicas. 2007; 38(1): 062-067.
Haldar K, Mohandas N. Malaria, erythrocytic infection, and anemia. Hematology. 2009; 2009(1): 87-93. doi: 10.1182/asheducation-2009.1.87
Yang W, Zhang X, Tian Y, et al. Deep Learning for Single Image Super-Resolution: A Brief Review. arXiv. 2019; arXiv:1808.03344v3.
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017; 60(6): 84-90. doi: 10.1145/3065386
Borja-Robalino R, Monleón-Getino A, Rodellar J. Standardization of performance metrics for classifiers (Spanish). Revista Ibérica de Sistemas e Tecnologias de Informação. 2020; E30: 184-196.
Traore BB, Kamsu-Foguem B, Tangara F. Deep convolution neural network for image recognition. Ecological Informatics. 2018; 48: 257-268. doi: 10.1016/j.ecoinf.2018.10.002
Karim A, Singh J, Mishra A, et al. Toxicity prediction by multimodal deep learning. Pacific Rim Knowledge Acquisition Workshop. 2019; 2: 142-152.
Available online: http://www.evanlray.com/stat344ne_s2020/materials/20200226_generators_data_augmentation/20200225_stuff/20200225_stuff.pdf 2020 (accessed on 6 March 2023).
Ho Y, Wookey S. The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling. IEEE Access. 2020; 8: 4806-4813. doi: 10.1109/access.2019.2962617
Javid AM, Das S, Skoglund M, et al. A ReLu dense layer to improve the performance of neural networks. arXiv. 2020; arXiv2010.13572v1.
Karim A, Mishra A, Newton MAH, et al. Efficient Toxicity Prediction via Simple Features Using Shallow Neural Networks and Decision Trees. ACS Omega. 2019; 4(1): 1874-1888. doi: 10.1021/acsomega.8b03173
Margherita G, Enrico B, Giorgio V. Metrics for Multi-class Classification: An Overview. arXiv. 2020; arXiv:2008.05756v1.
Opitz J, Burst S. Macro F1 and Macro F. arXiv. 2021; arXiv:1911.03347v3.
Murphy KP. Machine learning: A probabilistic perspective. MIT Press; 2012.