Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Creating a crop type map is a dominant yet complicated model to produce. This study aims to determine the best model to identify the wheat crop in the Haridwar district, Uttarakhand, India, by presenting a novel approach using machine learning techniques for time series data derived from the Sentinel-2 satellite spanned from mid-November to April. The proposed methodology combines the Normalized Difference Vegetation Index (NDVI), satellite bands like red, green, blue, and NIR, feature extraction, and classification algorithms to capture crop growth's temporal dynamics effectively. Three models, Random Forest, Convolutional Neural Networks, and Support Vector Machine, were compared to obtain the start of season (SOS). It is validated and evaluated using the performance metrics. Further, Random Forest stood out as the best model statistically and spatially for phenology parameter extraction with the least RMSE value at 19 days. CNN and Random Forest models were used to classify wheat crops by combining SOS, blue, green, red, NIR bands, and NDVI. Random Forest produces a more accurate wheat map with an accuracy of 69% and 0.5 MeanIoU. It was observed that CNN is not able to distinguish between wheat and other crops. The result revealed that incorporating the Sentinel-2 satellite data bearing a high spatial and temporal resolution with supervised machine-learning models and crop phenology metrics can empower the crop type classification process.
In this paper advanced Sentiment Analysis techniques were applied to evaluate public opinions reported by rail users with respect to four major European railway companies, i.e., Trenitalia and Italo in Italy, SNCF in France and Renfe in Spain. Two powerful language models were used, RoBERTa and BERT, to analyze big amount of text data collected from a social platform dedicated to customers reviews, i.e., TrustPilot. Data concerning the four European railway companies were first collected and classified into subcategories related to different aspects of the railway sector, such as train punctuality, quality of on-board services, safety, etc. Then, the RoBERTa and BERT models were developed to understand context and nuances of natural language. This study provides a useful support for railways companies to promote strategies for improving their service.
Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
The present article reports the applications of Caputo-Fabrizio time-fractional derivatives. This article generalizes the idea of unsteady MHD free convective flow in a Walters.-B fluid with heat and mass transfer study over an exponential isothermal vertical plate embedded in a porous medium. The governing equations are converted into dimensionless form and extended to fractional model. The generalized Walters-B fluid model has been solved analytically using the Laplace transform technique. From the general solutions we reduce limiting solutions when to the similar motion for Newtonian fluid. The corresponding expressions for and Nusselt and Sherwood numbers are also assessed. Numerical results for velocity, temperature and concentration are demonstrated graphically for various factors of interest and discussed. As a result, we have plotted the influence of fractional parameter on fluid flow and drawn comparison between fractional Walters’-B and fractional Newtonian fluid and found that fractional Newtonian fluid is faster than fractional Walters’-B fluids.
Every year, hundreds of fires occur in the forests and rangelands across the world and damage thousands hectare of trees, shrubs, and plants which cause environmental and economic damages. This study aims to establish a real time forest fire alert system for better forest management and monitoring in Golestan Province. In this study, in order to prepare fire hazard maps, the required layers were produced based on fire data in Golestan forests and MODIS sensor data. At first, the natural fire data was divided into two categories of training and test samples randomly. Then, the vegetation moisture stresses and greenness were considered using six indexes of NDVI, MSI, WDVI, OSAVI, GVMI and NDWI in natural fire area of training category on the day before fire occurrence and a long period of 15 years, and the risk threshold of the parameters was considered in addition to selecting the best spectral index of vegetation. Finally, the model output was validated for fire occurrences of the test category. The results showed the possibility of prediction of fire site before occurrence of fire with more than 80 percent accuracy.
Copyright © by EnPress Publisher. All rights reserved.