1. Li, R. (2021). Use Linear Weighted Genetic Algorithm to Optimize the Scheduling of Fog Computing Resources. Complexity, 2021(1). Portico. https://doi.org/10.1155/2021/9527430
2. Bitam, S., Zeadally, S., & Mellouk, A. (2017). Fog computing job scheduling optimization based on bees swarm. Enterprise Information Systems, 12(4), 373–397. https://doi.org/10.1080/17517575.2017.1304579
3. Pham, T. P., Durillo, J. J., & Fahringer, T. (2017). Predicting workflow task execution time in the cloud using a two-stage machine learning approach. IEEE Transactions on Cloud Computing, 21(1), 1–13.
4. Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-ss054
5. Shahid, M. H., Hameed, A. R., ul Islam, S., et al. (2020). Energy and delay efficient fog computing using caching mechanism. Computer Communications, 154, 534–541. https://doi.org/10.1016/j.comcom.2020.03.001
6. Gourisaria, M. K., Patra, S. S., & Khilar, P. M. (2016). Minimizing energy consumption by task consolidation in cloud centers with optimized resource utilization. International Journal of Electrical and Computer Engineering, 6(6), 3283–3292. https://doi.org/10.11591/ijece.v6i6.12251
7. Ahmad, N., & Qahmash, A. (2021). SmartISM: Implementation and Assessment of Interpretive Structural Modeling. Sustainability, 13(16), 8801. https://doi.org/10.3390/su13168801
8. Artificial Neural Networks and Machine Learning—ICANN 2016. (2016). In A. E. P. Villa, P. Masulli, & A. J. Pons Rivero (Eds.), Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-44781-0
9. Attri, R., Dev, N., & Sharma, V. (2013). Interpretive structural modelling (ISM) approach: An overview. Research Journal of Management Sciences, 2(2).
10. Meng, X., Bradley, J., Yuvaz, B., et al. (2016). MLlib: Machine learning in Apache Spark. Journal of Machine Learning Research, 17(1), 1–7.
11. Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497–510. https://doi.org/10.1016/j.im.2014.03.006
12. Chang, R.-S., Lin, C.-F., & Chen, J.-J. (2011). Selecting the most fitting resource for task execution. Future Generation Computer Systems, 27(2), 227–231. https://doi.org/10.1016/j.future.2010.09.003
13. Fan, Y., Wu, W., Xu, Y., et al. (2014). Improving MapReduce performance by balancing skewed loads. China Communications, 11(8), 85–108. https://doi.org/10.1109/cc.2014.6911091
14. Shukla, A., Kumar, S., & Singh, H. (2020). MLP-ANN-Based Execution Time Prediction Model and Assessment of Input Parameters Through Structural Modeling. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 91(3), 577–585. https://doi.org/10.1007/s40010-020-00695-9
15. Duong, T. N. B., Zhong, J., Cai, W., et al. (2016). RA2: Predicting Simulation Execution Time for Cloud-Based Design Space Explorations. In Proceedings of the 2016 IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time Applications (pp. 120–127). https://doi.org/10.1109/ds-rt.2016.9
16. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
17. Hasteer, N., Bansal, A., & Murthy, B. K. (2017). Assessment of cloud application development attributes through interpretive structural modeling. International Journal of System Assurance Engineering and Management, 8(2), 1069–1078. https://doi.org/10.1007/s13198-017-0571-2
18. Ramesh, V. P., Baskaran, P., Krishnamoorthy, A., et al. (2019). Back propagation neural network based big data analytics for a stock market challenge. Communications in Statistics - Theory and Methods, 48(14), 3622–3642. https://doi.org/10.1080/03610926.2018.1478103
19. Shukla, A., Kumar, S., & Singh, H. (2019). Fault tolerance based load balancing approach for web resources. Journal of the Chinese Institute of Engineers, 42(7), 583–592. https://doi.org/10.1080/02533839.2019.1638307
20. Sabireen, H., & Neelanarayanan, V. (2021). A review on fog computing: Architecture, fog with IoT, algorithms and research challenges. ICT Express, 7(2), 162–176. https://doi.org/10.1016/j.icte.2021.05.004
21. Chang, R.-S., Lin, C.-F., & Chen, J.-J. (2011). Selecting the most fitting resource for task execution. Future Generation Computer Systems, 27(2), 227–231. https://doi.org/10.1016/j.future.2010.09.003
22. Abdelaziz, A., Elhoseny, M., Salama, A. S., et al. (2018). A machine learning model for improving healthcare services on cloud computing environment. Measurement, 119, 117–128. https://doi.org/10.1016/j.measurement.2018.01.022
23. Bitam, S., Zeadally, S., & Mellouk, A. (2018). Fog computing job scheduling optimization based on bees swarm. Enterprise Information Systems, 12(4), 373–397. https://doi.org/10.1080/17517575.2017.1304579