Cardiovascular imaging analysis is a useful tool for the diagnosis, treatment and monitoring of cardiovascular diseases. Imaging techniques allow non-invasive quantitative assessment of cardiac function, providing morphological, functional and dynamic information. Recent technological advances in ultrasound have made it possible to improve the quality of patient treatment, thanks to the use of modern image processing and analysis techniques. However, the acquisition of these dynamic three-dimensional (3D) images leads to the production of large volumes of data to process, from which cardiac structures must be extracted and analyzed during the cardiac cycle. Extraction, three-dimensional visualization, and qualification tools are currently used within the clinical routine, but unfortunately require significant interaction with the physician. These elements justify the development of new efficient and robust algorithms for structure extraction and cardiac motion estimation from three-dimensional images. As a result, making available to clinicians new means to accurately assess cardiac anatomy and function from three-dimensional images represents a definite advance in the investigation of a complete description of the heart from a single examination. The aim of this article is to show what advances have been made in 3D cardiac imaging by ultrasound and additionally to observe which areas have been studied under this imaging modality.
The optimized methodology and results of the new characterization in terms of dose and image quality of the X-ray system used in the main pediatric hemodynamics service in Chile are presented. In addition, scattered dose rate values at the operator’s eye level are reported for all acquisition modes available in different thicknesses of absorbent media and angiography. The characterization was performed according to the European DIMOND and SENTINEL protocols adapted to pediatric procedures. The air kerma at the entrance surface (ESAK) was measured and the image quality parameters signal-to-noise ratio (SNR) and a figure of merit (FOM) were calculated. The scattered dose rate was measured in personal dose equivalent units. The ESAK for fluoroscopic modes ranged from 0.2 to 35.6 μGy/image when passing from 4 to 20 cm of polymethyl methacrylate (PMMA). For the cine mode, these values ranged from 2.8 to 160.1 μGy/image. The values of the image quality parameters showed a correct system configuration, although abnormal values were observed in the medium fluoroscopic mode. As for the scattered dose rate at the level of the cardiologist’s eyes, the highest value is PMMA with a thickness of 20 cm, where the cine mode reached 9.41 mSv·h-1. The differences found from previous evaluations can be explained by the deterioration of the system and the change of one of the X-ray tubes.
Copyright © by EnPress Publisher. All rights reserved.