In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
This paper aims to contribute with a literature review on the use of AI for cleaner production throughout industries in the consideration of AI’s advantage within the environment, economy, and society. The survey report based on the analysis of research papers from the recent literature from leading database sources such as Scopus, the Web of Science, IEEE Xplore, Science Direct, Springer Link, and Google Scholar identifies the strategic strengths of AI in optimizing the resources, minimizing the carbon footprint and eradicating wastage with the help of machined learning, neural networks and predictive analytics. AI integration presents vast aspects of environmental gains, including such enhancements as a marked reduction concerning the energy and materials consumed along with enhanced ways of handling the resulting waste. On the economic aspect, AI enhances the processes that lead to better efficiency and lower costs in the market on the other hand, on the social aspect, the application of any AI influences how people are utilized as workers/clients in the community. The following are some of the limitations towards AI adoption as proposed by the review of related literature; The best things that come with AI are yet accompanied by some disadvantages; there are implementation costs, data privacy, as well as system integration that may be a major disadvantage. The review envisages that with the continuation of the AI development in the following years, the optic is going to be the accentuation on the enhancement of the process of feeding the data in real-time mode, IoT connections, and the implementation of the proper ethical approaches toward the AI launching for all segments of the society. The conclusions provide precise suggestions to the people working in the industry to adopt the AI advancements appropriately and at the same time, encourage the lawmakers to create favorable legal environments to enable the ethical uses of AI. This review therefore calls for more targeted partnerships between the academia, industry, and government to harness the full potential of AI for sustainable industrial practices worldwide.
Tropical peat swamp is an essential ecosystem experiencing increased degradation over the past few decades. Therefore, this study used the social-ecological system (SES) perspective to explain the complex relationship between humans and nature in the Sumatran Peatlands Biosphere Reserve. The peat swamp forest has experienced a significant decline, followed by a significant increase in oil palm and forest plantations in areas designated for peat protection. Human systems have evolved to become complex and hierarchical, constituting individuals, groups, organizations, and institutions. Studies on SES conducted in the tropical peatlands of Asia have yet to address the co-evolutionary processes occurring in this region, which could illustrate the dynamic relationship between humans and nature. This study highlights the co-evolutionary processes occurring in the tropical peatland biosphere reserve and provides insights into their sustainability trajectory. Moreover, the coevolution process shows that biosphere reserve is shifting toward an unsustainable path. This is indicated by ongoing degradation in three zones and a lack of a comprehensive framework for landscape-scale water management. Implementing landscape-scale water management is essential to sustain the capacity of peatlands social-ecological systems facing disturbances, and it is important to maintain biodiversity. In addition, exploring alternative development pathways can help alter these trajectories toward sustainability.
The introduction of artificial intelligence (AI) marks the beginning of a revolutionary period for the global economic environments, particularly in the developing economies of Africa. This concept paper explores the various ways in which AI can stimulate economic growth and innovation in developing markets, despite the challenges they face. By examining examples like VetAfrica, we investigate how AI-powered applications are transforming conventional business models and improving access to financial resources. This highlights the potential of AI in overcoming obstacles such as inefficient procedures and restricted availability of capital. Although AI shows potential, its implementation in these areas faces obstacles such as insufficient digital infrastructure, limited data availability, and a lack of necessary skills. There is a strong focus on the need for a balanced integration of AI, which involves aligning technological progress with ethical considerations and economic inclusivity. This paper focuses on clarifying the capabilities of AI in addressing economic disparities, improving productivity, and promoting sustainable development. It also aims to address the challenges associated with digital infrastructure, regulatory frameworks, and workforce transformation. The methodology involves a comprehensive review of relevant theories, literature, and policy documents, complemented by comparative analysis across South Africa, Nigeria, and Mauritius to illustrate transformative strategies in AI adoption. We propose strategic recommendations to effectively and ethically utilize the potential of AI, by advocating for substantial investments in digital infrastructure, education, and legal frameworks. This will enable Africa to fully benefit from the transformative impact of AI on its economic landscape. This discourse seeks to offer valuable insights for policymakers, entrepreneurs, and investors, emphasizing innovative AI applications for business growth and financing, thereby promoting economic empowerment in developing economies.
This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
The WRKY gene family plays a very diverse role in plant growth and development. These genes contained an evolutionarily conserved WRKY DNA binding domain, which shows functional diversity and extensive expansion of the gene family. In this study, we conducted a genome-wide comparative analysis to investigate the evolutionary aspects of the WRKY gene family across various plant species and revealed significant expansion and diversification ranging from aquatic green algae to terrestrial plants. Phylogeny reconstruction of WRKY genes was performed using the Maximum Likelihood (ML) method; the genes were grouped into seven different clades and further classified into algae, bryophytes, pteridophytes, dicotyledons, and monocotyledons subgroups. Furthermore, duplication analysis showed that the increase in the number of WRKY genes in higher plant species was primarily due to tandem and segmental duplication under purifying selection. In addition, the selection pressures of different subfamilies of the WRKY gene were investigated using different strategies (classical and Bayesian maximum likelihood methods (Data monkey/PAML)). The average dN/dS for each group are less than one, indicating purifying selection. Our comparative genomic analysis provides the basis for future functional analysis, understanding the role of gene duplication in gene family expansion, and selection pressure analysis.
Copyright © by EnPress Publisher. All rights reserved.