Naturally occurring radionuclides can be categorized into two main groups: primordial and cosmogenic, based on their origin. Primordial radionuclides stem from the Earth’s crust, occurring either individually or as part of decay chains. Conversely, cosmogenic radionuclides originate from extraterrestrial sources such as space, the sun, and nuclear reactions involving cosmic radiation and the Earth’s atmosphere. Gamma-ray spectrometry is a widely employed method in Earth sciences for detecting naturally occurring radioactive materials (NORM). Its applications vary from environmental radiation monitoring to mining exploration, with a predominant focus on quantifying the content of uranium (U), thorium (Th), and potassium (K) in rocks and soils. These elements also serve as tracers in non-radioactive processes linked to NORM paragenesis. Furthermore, the heat generated by radioactive decay within rocks plays a pivotal role in deciphering the Earth’s thermal history and interpreting data concerning continental heat flux in geophysical investigations. This paper provides a concise overview of current analytical and measuring techniques, with an emphasis on state-of-the-art mass spectrometric procedures and decay measurements. Earth scientists constantly seek information on the chemical composition of rocks, sediments, minerals, and fluids to comprehend the vast array of geological and geochemical processes. The historical precedence of geochemists in pioneering novel analytical techniques, often preceding their commercial availability, underscores the significance of such advancements. Geochemical analysis has long relied on atomic spectrometric techniques, such as X-ray fluorescence spectrometry (XRFS), renowned for its precision in analyzing solid materials, particularly major and trace elements in geological samples. XRFS proves invaluable in determining the major constituents of silicate and other rock types. This review elucidates the historical development and methodology of these techniques while showcasing their common applications in various geoscience research endeavors. Ultimately, this review aims to furnish readers with a comprehensive understanding of the fundamental concepts and potential applications of XRF, HPGes, and related technologies in geosciences. Lastly, future research directions and challenges confronting these technologies are briefly discussed.
A review of the CARG Project of the Campania Region (marine counterpart) up to water depths of 200 m is herein proposed referring to the Gulf of Naples (southern Tyrrhenian Sea) aimed at focusing on the main scientific results obtained in the frame of this important project of marine geological cartography. The Gulf of Naples includes several geological sheets, namely n. 464 “Island of Ischia” both at the 1:25,000 and 1:10,000 scale, n. 465 “Island of Procida” at the 1:50,000 scale, n. 466–485 “Sorrento–Termini” at the 1:50,000 scale, n. 446–447 Naples at the 1:50,000 scale, and n. 484 “Island of Capri” at the 1:25,000 scale. The detailed revision of both the marine geological and geophysical data and of the literature data has allowed us to outline new perspectives in marine geology and cartography of Campania Region, including monitoring of coastal zone and individuation of coastal and volcano-tectonic and marine hazards.
Before the formal construction of a building, it is necessary to conduct an effective survey of the engineering geology, hydrogeology, and other contents within the construction area. The survey work is not only an important part of the early stage of engineering construction for engineering management personnel, but also an important factor in ensuring safety and stability during the construction process. Therefore, in order to effectively avoid various geological risks during the construction process or after the completion of the building, the preliminary engineering geological survey work is of great significance. In the process of engineering geological exploration, hydrogeological issues are also important exploration projects. This article will explore and study hydrogeological issues, analyze the water physical properties of rock and soil, and the impact of hydrogeological issues on the project, and then propose effective measures to do well in engineering geological exploration.
A geologic and geomorphologic study aimed at solving some geological and geotechnical problems, regarding the massive seepage of meteoric waters in the coastal cliffs of the Island of Procida (Naples Bay, Southern Italy) composed of both tuffs and loose pyroclastic deposits, has been carried out in the geosites of Terra Murata (Middle Ages village and coastal cliff towards the Corricella Bay) and Centane-Panoramica (coastal cliff facing on the Tyrrhenian Sea).
A detailed geologic and geomorphologic survey has allowed to suggest solutions to the applied geological and geotechnical problems related to the occurrence of massive seepages of waters at the physical interface between pyroclastic rocks and loose pyroclastic deposits, characterized by different density, permeability and porosity and also controlled by a dense network of fractures, involving the pyroclastic deposits cropping out in the selected areas.
Field sampling and geotechnical laboratory analyses have been carried out to calculate the values of main geotechnical parameters of the yellow tuffs cropping out at the Terra Murata Promontory. At the same time, a detailed monitoring of the seepages of waters has been carried out through a detailed geological survey of the tuff outcrops of the promontory. The obtained results have suggested a strong control from both the geomorphologic instability of the coastal cliff and tectonic setting. At the Centane-Panoramica geosite, the geological survey, coupled with geotechnical analyses and standard penetrometric tests, has accordingly evidenced that the geomorphologic instability was mainly concentrated in the sectors of the tuff coastal cliffs facing seawards towards the Tyrrhenian Sea.
Copyright © by EnPress Publisher. All rights reserved.