Maps of forest stand condition—the current phase of the forest-forming process—will be useful for foresters in their forest management in addition to the forest planning and cartographic materials. The mapping methodology was applied in the test area of the Bolshemurtinsky forest district of the Krasnoyarsk region, which is typical for the southern taiga forests of East Siberia. Source data for mapping was obtained on the basis of descriptions of the forest subcompartments on the GIS attribute table of the forest district. Forest stand confinement to the terrain relief indicators was identified on the basis of the SRTM 55-01 digital terrain model data. Spatial analysis has been performed using the ArcGIS Spatial Analyst module. Mapping capability has been shown not only for the year of forest inventory but also for the earlier period of time. To determine the predominant species and the age of the 100-year-old forest stand, a scheme was proposed in which the conceivable options are typified depending on the succession trend, the forest stand age prior to disturbance, and the period of reforestation. Map fragments of the test area as of 2006—the year of forest inventory—and as of 1906—the year of the intensive colonization beginning in southern Siberia—are demonstrated. Maps of forest condition in the test area represent successions that are typical in the southern taiga forests of Siberia: post-harvest, pyrogenic, and biogenic. The methodology of forest condition mapping is universal.
Personality traits refer to enduring patterns of emotions, behaviors, and thoughts that shape an individual’s distinct character, influencing how they perceive and engage with their environment. This quantitative study aims to underscore the influence of personal factors and the role of educational institutions in mapping sustainable green entrepreneurial intentions among university students in Saudia Arabia. To examine the impact of personality traits and entrepreneurship education on students’ green initiatives, the research employs a quantitative research method, collecting data through a structured questionnaire survey from 494 participants who enrolled in the entrepreneurship education at King Faisal University. Structural equation modeling via SmartPLS 3 is employed for data analysis. The study reveals significant associations between the need for achievement, proactiveness, risk-aversion, self-efficacy, and entrepreneurship education with green entrepreneurial intentions. Our research findings demonstrate that the inclusion of entrepreneurship education in the curriculum has a noteworthy and favorable influence on the intention to engage in green entrepreneurship (β = −0.105, t = 3.270, p < 0.001). Additionally, it is worth noting that the desire for achievement remains significantly associated with the intention to engage in green entrepreneurship (β = 0.120, t = 3.588, p < 0.000). Furthermore, the proactive behavior of individuals has a positive and constructive impact on the intention to engage in green entrepreneurship (β = 0.207, t = 4.272, p < 0.000). Similarly, the inclination to avoid risk is found to have a beneficial and significant influence on the intention to engage in green entrepreneurship (β = 0.336, t = 4.594, p < 0.000). Lastly, it is worth highlighting that individuals’ belief in their own abilities, referred to as self-efficacy, is positively and significantly linked to the intention to engage in green entrepreneurship (β = 0.182, t = 2.610, p < 0.009). The research carries social, economic, and academic implications by emphasizing the positive contribution of green entrepreneurs to the future. Practical recommendations for policymakers and decision-makers are provided.
A gradually detailed geophysical investigation took place on Ancient Marina territory. In that area was extended Ancient Tritaea, according to responsible Archaeological Services. The first approach had been attempted since 1988 by applied electric mapping based on a twin-probe array. Later, the survey extended to the peripheral zone under the relative request from the 6th Archaeological Antiquity. A new approach was implemented by combining three different geophysical techniques, like electrical mapping, total intensity, and vertical gradient. These were applied on discrete geophysical grids. Electric mapping tried to separate the area into low and high-interest subareas according to soil resistance allocation. That technique detected enough geometrical characteristics, which worked as the main lever for the application of two other geophysical techniques. The other two techniques would be to certify the existence of geometrical characteristics, which divorced them from geological findings. Magnetic methods were characterized as a rapid technique with greater sensitivity in relation to electric mapping. Also, vertical gradient focuses on the horizontal extension of buried remains. Processing of magnetic measurements (total and vertical) certified the results from electric mapping. Also, both of the techniques confirmed the existence of human activity results, which were presented as a cross-section of two perpendicular parts. The new survey results showed that the new findings related to results from the previous approach. Geophysical research in that area is continuing.
The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
Spectrum map is the foundation of spectrum resource management, security governance and spectrum warfare. Aiming at the problem that the traditional spectrum mapping is limited to two-dimensional space, a three-dimensional spectrum data acquisition and mapping system architecture for the integration of space, sky and earth is presented, and a spectrum map reconstruction scheme driven by propagation model is proposed, which can achieve high-precision three-dimensional spectrum map rendering under the condition of sparse sampling. The spectrum map reconstructed by this method in the case of single radiation source and multiple radiation sources is in good agreement with the theoretical results based on ray tracing method. In addition, the measured results of typical scenes further verify the feasibility of this method.
Creative cities as a study discipline have garnered extensive attention and research in theory and practice as a practical approach to urban revitalization and sustainable development. This study conducted a systematic review of academic research on creative cities. Utilizing the visual analysis tools Citespace and VOSviewer, a comprehensive analysis was performed on 570 relevant articles from the Web of Science database. This study analyzed the most influential publications, authors, journals, institutions, and countries within the sample. The investigation spans various disciplinary domains, including geography, environment, culture, and others. Additionally, an exploration of the structure and characteristics of co-cited references was undertaken to enhance our understanding of the theoretical foundations of creative cities research further. Among these, the focal points of the study encompass urban development, urban policies, and the challenges faced. Finally, through co-occurrence analysis of keywords and examining the evolutionary process, the study forecasted that future trends will focus on the practical application of cities to enhance the urban image and improve urban governance from multi-dimensional perspectives such as creativity-related cultural places, public art, and so forth, exploring novel models of creative cities from case to universal. The results of this study can support scholars in grasping the development trends and exploring focal points.
Copyright © by EnPress Publisher. All rights reserved.