Araza A, de Bruin S, Herold M, et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment. 2022; 272: 112917. doi: 10.1016/j.rse.2022.112917
Talucci AC, Loranty MM, Alexander HD. Siberian taiga and tundra fire regimes from 2001–2020. Environmental Research Letters. 2022; 17(2): 025001. doi: 10.1088/1748-9326/ac3f07
Zhang Q, Liang Y, He HS. Tree-Lists Estimation for Chinese Boreal Forests by Integrating Weibull Diameter Distributions with MODIS-Based Forest Attributes from kNN Imputation. Forests. 2018; 9(12): 758. doi: 10.3390/f9120758
Maksyutov S, Sedykh V, Kuzmenko EI, et al. Current state of forest mapping with Landsat data in Siberia. EGU General Assembly. 2016; 18.
White JC, Hermosilla T, Wulder MA, et al. Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sensing of Environment. 2022; 271: 112904. doi: 10.1016/j.rse.2022.112904
Khovratovich T, Bartalev S, Kashnitskii A, et al. Forest change detection based on sub-pixel tree cover estimates using Landsat-OLI and Sentinel 2 data. IOP Conference Series: Earth and Environmental Science. 2020; 507(1): 012011. doi: 10.1088/1755-1315/507/1/012011
Bartalev SA, Egorov VA, Zharko VO, et al. Satellite mapping of the vegetation cover of Russia. Moscow, Russian Federation: Space Research Institute RAS; 2016.
Rees WG, Tomaney J, Tutubalina O, et al. Estimation of Boreal Forest Growing Stock Volume in Russia from Sentinel-2 MSI and Land Cover Classification. Remote Sensing. 2021; 13(21): 4483. doi: 10.3390/rs13214483
Khvostikov SA, Bartalev SA. Methods for Wildfire Spread Prediction and Their Integration With Remote Sensing Data. Information Technologies in Remote Sensing of the Earth - RORSE 2018; 2019.
Bartalev SA, Stytsenko FV. Assessment of Forest-Stand Destruction by Fires Based on Remote-Sensing Data on the Seasonal Distribution of Burned Areas. Contemporary Problems of Ecology. 2021; 14(7): 711-716. doi: 10.1134/s1995425521070027
Hovratovich TS, Bartalev SA. Methods of Remote Assessment of Indicators of the Tree Canopy Horizontal Structure According to the MODIS Satellite System Data. In: Proceedings of Fundamental and applied space research; 30 September - 2 October 2022; Moscow, Russian Federation.
Farber SK, Kuzmik NS, Bruykhanov NV. Errors in Interpretation of the Angara Region Forests by the Method of Classification of Satellite Image Pixels. Siberian Journal of Forest Science. 2016; 4: 56-67.
Lim K, Treitz P, Wulder M, et al. LiDAR remote sensing of forest structure. Progress in Physical Geography: Earth and Environment. 2003; 27(1): 88-106. doi: 10.1191/0309133303pp360ra
Pearse GD, Watt MS, Dash JP, et al. Comparison of models describing forest inventory attributes using standard and voxel-based lidar predictors across a range of pulse densities. International Journal of Applied Earth Observation and Geoinformation. 2019; 78: 341-351. doi: 10.1016/j.jag.2018.10.008
Novakovsky BA, Kovach NS, Entin AL, Kalinovsky LV. Geoinformation Mapping of Forest Canopy Based on Airborne Laser Scanning. Geoinformatics. 2017; 1: 32-39.
Rogachevskaya MA. А Stolypin: Agrarian Reform and Siberia (Russian). Available online: http://econom.nsc.ru/eco/arhiv/ReadStatiy/2002_09/Rogachevska.htm (accessed on 26 December 2024).
Laymtsev NI. Assessment and forecast of Siberian moth mass propagation risks in the Krasnoyarsk Krai forests. News of the St. Petersburg Forestry. 2019; 228: 294-311. doi: 10.21266/2079-4304.2019.228.294-311
Nilsson S, Shvidenko A. Biospheric Role of Siberian Ecosystems. Laxenburg: International Institute for Applied Systems Analysis; 1993.
Farber SK. Forest Stand Formation in Eastern Siberia. Novosibirsk, Russian Federation: Siberian Branch of Russian Academy of Science; 2000.
Healey S, Cohen W, Zhiqiang Y, et al. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment. 2005; 97(3): 301-310. doi: 10.1016/j.rse.2005.05.009