Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
The territorial planning approach to allocating productive forces is based on the fact that territories have competitive advantages in producing specific products. However, in agriculture, the advantages principle cannot be used to shape the allocation patterns, due to a variety of intervening factors, such as the climatic and environmental conditions for agricultural production and the quality of land and availability of water. In the case of Russia, one of the most diverse countries in terms of the territorial disparities in agricultural production, this study examines the location and development patterns of the agricultural sector. The study identifies the competitive advantages of territories by comparing localization of agricultural production, production costs, performance, and profitability of agricultural producers, as well as prices of agricultural products in 78 different administrative regions in Russia. The study reveals which regions have more advantageous conditions for over-concentrating energy capacities, labor resources, fixed capital, and investments. However, at a certain point, over-concentrated production forces can lead to a deterioration in the performance of farmers due to an increase in capital intensity. Therefore, countries with significant regional differences in agricultural production should adjust their spatial development patterns according to the parameters of territories’ comparative advantages.
The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
Diagnosis-related groups (DRGs) are gaining prominence in healthcare systems worldwide to standardize potential payments to hospitals. This study, conducted across public hospitals, investigates the impact of DRG implementation on human resource allocation and management practices. The research findings reveal significant changes in job roles and skill requirements based on a mixed-methods approach involving 70 healthcare professionals across various roles. 50% of respondents reported changes in daily responsibilities, and 42% noted the creation of new roles in their organizations. Significant challenges include inadequate training (46%), and coding complexity (38%). Factor analysis revealed a complex relationship between DRG familiarity, job satisfaction, and staff morale. The study also found a moderate negative correlation between the impact on morale and years of service in the current hospital, suggesting that longer-tenured staff may require additional support in adapting to DRG systems. This study addresses a knowledge gap in the human resource aspects of DRG implementation. It provides healthcare administrators and policymakers with evidence to inform strategies for effective DRG adoption and workforce management in public hospitals.
Copyright © by EnPress Publisher. All rights reserved.