Solar energy is a reliable and abundant resource for both heating and power generation. The current research examines how the novel class of nano-embedded Bees wax phase change materials (NEBPCMs) improves heat storage qualities. The synthetic NEBPCMs were subjected to experimental testing using, XRD, Bees wax and Al2O3 FESEM. A typical solar water heating system features a flat plate collector unit incorporating Bees Wax phase change material (NEBPCM) combined with varying concentrations of Al2O3 (0.01%, 0.015%, and 0.02%). The absorber plate surface is coated with a Nano-hybrid coating consisting of Black Paint, Al2O3, and additional Fe3O4 at a 2% concentration. Pure water is frequently used in these solar water heaters (SWH), with performance evaluations conducted using different Bees Wax and Al2O3 concentrations of NEBPCM (Bees Wax + Al2O3). The system’s efficiency is assessed across different flow rates (60, 90, and 120 kg/hr) and tilt angles (15, 30, and 45 degrees). This study aims to examine the feasibility of using PCMs to store solar energy for night time water heating, ensuring a continuous supply of hot water maximum efficiency achieved by using NEBPCM in solar water heater 52.26% at a flow rate of 120 Kg/hr, at angle of 45 degrees and Concentration 0.015%.
This research presents an innovative perspective on vocational education by merging the Instructional System Design (ISD) model with Innovation in Thailand Vocational Education and Training (InnoTVET) principles. Targeted at nursing students, the course aims to cultivate entrepreneurial skills while connecting vocational training with healthcare policy development. It aligns with global movements in Education for Sustainable Development (ESD), addressing the increasing demand for nurse entrepreneurs who can devise creative healthcare solutions within established policy frameworks. By employing mastery learning techniques alongside design thinking, the course effectively bridges theoretical concepts with practical applications. The mixed-methods study underlines relevant contribution in students’ entrepreneurial mindsets. Results from t-tests reveal the students’ ability to identify opportunities, engage in innovative thinking, and work within policy frameworks. Findings are supported by qualitative data, which demonstrate enhanced confidence, improved problem-solving capacities, and a deeper understanding of healthcare market dynamics. Although expert evaluation of student projects is scheduled for future iterations, the initial outcomes reinforce the course’s success. The course is structured into seven modules spanning 45 hours, featuring active learning components, five business-oriented assignments, and a final innovation project that integrates the curriculum’s core elements. This design ensures students develop both practical expertise and interdisciplinary insights critical to healthcare innovation. The integration of InnoTVET and ISD principles in nursing education sets a precedent for vocational education reform. This example of a successful nursepreneurship initiative provides a scalable model for enhancing vocational programs in diverse fields, fostering innovation and sustainability.
The construction of journalism majors contains rich ideological and political resources. As one of the practical courses, the news interview and writing course is a professional basic course for journalism students. Therefore, for professionals who will undertake journalism in the future, they should not only have the ability to produce and disseminate information, but also shoulder the responsibility of telling Chinese stories, spreading Chinese voices, and delivering Chinese excellent culture. For the teaching of news interview and writing courses, students should be guided in thought, so that they have a sense of home and country, good professional ethics and social responsibility.
Nowadays, our life needs more and more electricity, and our lives cannot be without electricity, which requires our power to develop more quickly. Power plants are undoubtedly the place where electricity is produced. And now most of the power plant or chemical energy can be converted into heat, and then through the heat to do power production. The boiler is the main part of the power plant. Boiler unit consists of boiler body equipment and auxiliary equipment. The main body of the boiler consists of 'pot' (soft drinks system) and 'furnace' (combustion system). Baotou thermal power plant is mainly burning gas. The gas and air are at a certain rate into the furnace burning. This can greatly reduce the pollution of the environment, but also the full use of fuel. The soda system is mainly carried out in the drum. The heat generated by the combustion system heats the water in the drum, producing steam and then pushing the steam turbine into mechanical energy and finally into electrical energy. This has a high demand for water level, water composition, and the temperature of the steam produced in the drum. The water level should have upper and lower bounds, keeping it within a certain range. Water level is too high, will affect the steam drum soda separation effect, so that the steam drum exports of saturated steam with water increased, causing damage to the turbine, will cause serious explosion. And the water level is too low, it will affect the natural circulation of the normal, serious will make the individual water pipe to form a free water, resulting in flow stagnation, resulting in local metal wall overheating and burst pipe. Water in the heating at the same time will form a lot of scale, if not the chemical treatment of water will be in the formation of scale in the drum, cleaning more difficult, so the damage to the drum. The pressure of the drum is also an important control variable, and pressure control is highly correlated with liquid level control. It is necessary to ensure the integrity of the equipment, but also to ensure safety, followed by ensuring that the process of normal operation of the drum water. This time, the design is mainly for the unit steam temperature control system design. Steam temperature is one of the important indicators of boiler operation quality. It is too high and too low will significantly affect the power plant safety and economy. If the temperature of the steam is low, it will cause the power plant to increase the heat consumption and increase the axial thrust of the turbine to cause the thrust bearing to overload, but also cause the steam turbine to increase the final steam humidity, thus reducing the efficiency of the turbine, aggravating the erosion of the blade. On the contrary, the steam temperature is too high will make the super-heater wall metal strength decreased, and even burn the high temperature of the super-heater, the steam pipe and steam turbine high-pressure part will be damaged, seriously affecting safety. The boiler temperature control system mainly includes the adjustment of the superheated steam and the reheat steam temperature. The superheated steam temperature is the highest temperature in the boiler soda system. The stability of the steam temperature is very important for the safe and economical operation of the unit. Therefore, in the boiler operation, must ensure that the steam temperature in the vicinity of the specified value, and the temperature of the super-heater tube wall does not exceed the allowable working temperature.
Modified chitosan hybrids were obtained via chemical reaction of chitosan with two pyrazole aldehyde derivatives to produce two chitosan Schiff bases, Cs-SB1, and Cs-SB2, respectively. FTIR spectroscopy and scanning electron microscopy confirmed both chemical structures and morphology of these Schiff bases. Thermal gravimetric analysis showed an improvement of thermal properties of these Schiff bases. Both chitosan Schiff bases were evaluated in a batch adsorption approach for their ability to remove Cu(II) ions from aqueous solutions. Energy dispersive X-ray for the Schiff bases adsorbed metal ions in various aqueous solutions was performed to confirm the existence of adsorbed metal ions on the surface substrate and their adsorptive efficiency for Cu(II) ions. Results of the batch adsorption method showed that prepared Schiff bases have good ability to remove Cu(II) ions from aqueous solutions. The Langmuir isotherm equation showed a better fit for both adsorbents with regression coefficients (R2 = 0.97 and 0.99, respectively) with maximum adsorption capacity for Cu(II) of 10.33 and 39.84 mg/g for Cs-SB1 and Cs-SB2, respectively. All prepared compounds, pyrazoles and two chitosan Schiff bases, showed good antimicrobial activity against three Gram +ve bacteria, three Gram –ve bacteria and Candida albicans, with varying degrees when compared to the standard antimicrobial agents.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Copyright © by EnPress Publisher. All rights reserved.