In the era of digital disruption, the imperative development of broadband services is evident. The emergence of 5G technology represents the latest stride in commercial broadband, offering data speeds poised to drive significant societal advancement. The midst of responding to this transformative phenomenon. This pursuit unveils a landscape replete with opportunities and challenges, particularly regarding how 5G’s potential benefits can drive the government towards equitable distribution, ensuring accessibility for all. Simultaneously, there exists a legal hurdle to ensure this vision’s fruition. From a legal perspective, perceived as infrastructure for transformation, the law must seamlessly adapt to and promptly address technological progress. Utilizing normative juridical methods and analytical techniques via literature review, this research endeavors to outline the advantages of 5G and scrutinize Indonesia’s latest telecommunications regulations and policies, alongside corresponding investments. The study ultimately aims to provide a juridical analysis of 5G implementation within Indonesia’s legal framework.
In Nigeria, deforestation has led to an unimaginable loss of genetic variation within tree populations. Regrettably, little is known about the genetic variation of many important indigenous timber species in Nigeria. More so, the specific tools to evaluate the genetic diversity of these timber species are scarce. Therefore, this study developed species-specific markers for Pterygota macrocarpa using state-of-the-art equipment. Leaf samples were collected from Akure Forest Reserve, Ondo State, Nigeria. DNA isolation, quantification, PCR amplification, gel electrophoresis, post-PCR purification, and sequencing were done following a standardized protocol. The melting temperatures (TM) of the DNA fragments range from 57.5 ℃to 60.1 ℃ for primers developed from the MatK gene and 58.7 ℃ to 60.5 ℃ for primers developed from the RuBisCo gene. The characteristics of the ten primers developed are within the range appropriate for genetic diversity assessment. These species-specific primers are therefore recommended for population evaluation of Pterygota macrocarpa in Nigeria.
As digital technologies continue to shape the economy, countries are faced with increasing scrutiny in the use of digital transformation to aid productivity and improve performance. In South Africa, the COVID-19 pandemic accelerated Small and medium-sized businesses’ (SMEs’) uptake of digital technologies, as many businesses had to shift their operations online and adopt new digital tools and technologies to solve the challenges posed by the pandemic. This has led to an increased focus on digital transformation mechanisms among South African firms. Therefore, the study examines the effect of digital transformation on the productivity of firms using cross-sectional data from the World Bank Enterprise Survey (WBES) (2020). The survey was based on firms and is a representative sample of the private sector in the South African economy and covers a wide variety of business environment themes, such as infrastructure, competitiveness, access to finance, and performance indicators. We found that digital transformation improved productivity of South African firms. Furthermore, empirical findings are reassuring robust to the IV-2SLS and quantile regression model, size of business, sectoral and provincial analysis. Finally, we recommend that policy makers should develop and implement initiatives to improve digital infrastructure, including high-speed internet access and reliable connectivity, especially in rural and underserved areas.
Conversion of the ocean’s vertical thermal energy gradient to electricity via OTEC has been demonstrated at small scales over the past century. It represents one of the planet’s most significant (and growing) potential energy sources. As described here, all living organisms need to derive energy from their environment, which heretofore has been given scant serious consideration. A 7th Law of Thermodynamics would complete the suite of thermodynamic laws, unifying them into a universal solution for climate change. 90% of the warming heat going into the oceans is a reasonably recoverable reserve accessible with existing technology and existing economic circumstances. The stratified heat of the ocean’s tropical surface invites work production in accordance with the second law of thermodynamics with minimal environmental disruption. TG is the OTEC improvement that allows for producing two and a half times more energy. It is an endothermic energy reserve that obtains energy from the environment, thereby negating the production of waste heat. This likewise reduces the cost of energy and everything that relies on its consumption. The oceans have a wealth of dissolved minerals and metals that can be sourced for a renewable energy transition and for energy carriers that can deliver ocean-derived power to the land. At scale, 31,000 one-gigawatt (1-GW) TG plants are estimated to displace about 0.9 W/m2 of average global surface heat into deep water, from where, at a depth of 1000 m, unconverted heat diffuses back to the surface and is available for recycling.
Copyright © by EnPress Publisher. All rights reserved.