1. Spalding M. World Atlas of Mangroves. Washington DC; 2010.
2. Alongi DM. Mangroves among the world’s most threatened ecosystems. Bioscience. 2015; 65(9): 947-951.
3. Ohimain E. Mangroves of the Niger Delta: Their Importance, Threats, and Possible Restoration. Wetland Science & Practice. 2016; 33(4): 110-121. doi: 10.1672/ucrt083-266
4. Giri C, Pengrahm S, Nightingale J, Longley S. Losses and gains in coastal biomass within the Indo-Pacific region from 1990 to 2008. Environmental monitoring and assessment. 2011; 177(1-4): 143-160.
5. Richards DR, Friess DA. Rates and drivers of mangrove deforestation and conversion in Southeast Asia. In: Tropical Mangrove Ecosystems. Springer, Cham; 2015.
6. Alongi DM. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests. 2018; 9(10): 596. doi: 10.3390/f9100596
7. Farnsworth EA, Ellison JC. The global conservation status of mangroves. Ambio. 1997; 26(6): 328-334.
8. Ohimain EI. Benefits and Threats of Biodiversity Conservation in Stubbs Creek Forest Reserve, Nigeria. In: Biodiversity in Africa: Potentials, Threats and Conservation. Springer; 2022.
9. Onuh PA, Omenma TJ, Onyishi CJ, et al. Artisanal refining of crude oil in the Niger Delta: A challenge to clean-up and remediation in Ogoniland. Local Economy: The Journal of the Local Economy Policy Unit. 2021; 36(6): 468-486. doi: 10.1177/02690942211071075
10. Efenakpo OD, Chris DI, Onuchukwu NC, et al. Illegal Crude Oil Refining and its Implications on the Niger Delta’s Ecosystem. In: Proceedings of the Conference of Ecological Society of Nigeria (ECOSON) titled Natural Ecosystem Sustainability in the 21st Century; 2022.
11. Hansen MC, Potapov PV, Moore R, et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 2013; 342(6160): 850-853. doi: 10.1126/science.1244693
12. Lillesand TM, Kiefer RW. Remote Sensing and Image Interpretation, 7th ed. Wiley, New York; 2015.
13. Deng N, Tian Y, Zhang C. Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. CRC Press; 2012.
14. Pal M, Mather PM. Support Vector Machines for classification in remote sensing. International Journal of Remote Sensing. 2005; 26(5): 1007-1011. doi: 10.1080/01431160512331314083
15. Mountrakis G, Adam E, Clerke JF. Support Vector Machines in remote sensing: A review. Journal of Applied Remote Sensing. 2011; 4(1): 041001.
16. Xiong Y, Zhang Z, Chen F. Comparison of artificial neural network and Support Vector Machine methods for urban land use/cover classifications from remote sensing images A Case Study of Guangzhou, South China. In: Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010); 2010.
17. Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. In: Proceedings of the IOP Conference Series: Earth and Environmental Science; 2000.
18. Rosmasita, Siregar VP, Agus SB, et al. An object-based classification of mangrove land cover using Support Vector Machine Algorithm. IOP Conference Series: Earth and Environmental Science. 2019; 284(1): 012024. doi: 10.1088/1755-1315/284/1/012024
19. Camps-Valls G, Gomez-Chova L, Calpe-Maravilla J, et al. Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Transactions on Geoscience and Remote Sensing. 2004; 42(7): 1530-1542. doi: 10.1109/tgrs.2004.827262
20. Darmawan S, Sari DK, Wikantika K, et al. Identification before-after Forest Fire and Prediction of Mangrove Forest Based on Markov-Cellular Automata in Part of Sembilang National Park, Banyuasin, South Sumatra, Indonesia. Remote Sensing. 2020; 12(22): 3700. doi: 10.3390/rs12223700
21. Shao Y, Lunetta RS. Comparison of Support Vector Machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing. 2012; 70: 78-87. doi: 10.1016/j.isprsjprs.2012.04.001
22. Ozigis MS, Kaduk JD, Jarvis CH. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria. Environmental Science and Pollution Research. 2018; 26(4): 3621-3635. doi: 10.1007/s11356-018-3824-y
23. Alongi DM. Carbon sequestration in mangrove forests. Carbon Management. 2012; 3(3): 313-322. doi: 10.4155/cmt.12.20
24. Ite AE, Ibok UJ, Ite MU, Petters SW. Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria’s Niger Delta. American Journal of Environmental Protection. 2013; 1(4): 78-90. doi: 10.12691/env-1-4-2
25. Ugochukwu CNC, Ertel J. Negative Impacts of Oil Exploration on Biodiversity Management in the Niger De Area of Nigeria. Impact Assessment and Project Appraisal. 2008; 26: 139-147.
26. Numbere AO. Application of GIS and remote sensing towards forest resource management in mangrove forest of Niger Delta. Natural Resources Conservation and Advances for Sustainability; 2022.
27. USGS. EarthExplorer. United States Geological Survey. USGS; 2022.
28. Roy DP, Wulder MA, Loveland TR, et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment. 2014; 145: 154-172. doi: 10.1016/j.rse.2014.02.001
29. Wulder MA, Loveland TR, Roy DP, et al. Current status of Landsat program, science, and applications. Remote Sensing of Environment. 2019; 225: 127-147. doi: 10.1016/j.rse.2019.02.015
30. Congalton RG, Green K. Assessing the Accuracy of Remotely Sensed Data. CRC Press; 2019.
31. Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 2009; 113(5): 893-903. doi: 10.1016/j.rse.2009.01.007
32. Markham BL, Helder DL. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sensing of Environment. 2012; 122: 30-40. doi: 10.1016/j.rse.2011.06.026
33. Chavez PS. Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering & Remote Sensing. 1996; 62(9): 1025-1036.
34. Song C, Woodcock CE, Seto KC, et al. Classification and change detection using Landsat TM data. Remote Sensing of Environment. 2001; 75(2): 230-244.
35. Lillesand T, Kiefer RW, Chipman J. Remote Sensing and Image Interpretation. Wiley; 2015.
36. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. 2007; 28(5): 823-870. doi: 10.1080/01431160600746456
37. Veraverbeke S, Somers B, Verstraeten WW. A time-integrated MODIS burn severity index based on aerosol absorption. Remote Sensing of Environment. 2014; 148: 70-79.
38. Singh A. Review Article Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing. 1989; 10(6): 989-1003. doi: 10.1080/01431168908903939
39. Cohen J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Lawrence Erlbaum Associates; 1988.
40. Student. The Probable Error of a Mean. Biometrika. 1908; 6(1): 1. doi: 10.2307/2331554
41. Fisher RA. Statistical Methods for Research Workers. Oliver & Boyd; 1925.
42. Montgomery DC, Peck EA, Vining GG. Introduction to Linear Regression Analysis, 5th ed. Wiley; 2012.
43. Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association. 1952; 47(260): 583-621. doi: 10.1080/01621459.1952.10483441
44. Pearson KX. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1900; 50(302): 157-175. doi: 10.1080/14786440009463897
45. Kendall MG. A new measure of rank correlation. Biometrika. 1938; 30(1-2): 81-93. doi: 10.1093/biomet/30.1-2.81
46. Chen Y, Todd AS, Murphy MH, et al. Anticipated Water Quality Changes in Response to Climate Change and Potential Consequences for Inland Fishes. Fisheries. 2016; 41(7): 413-416. doi: 10.1080/03632415.2016.1182509
47. Ohimain EI, Eteh D. Canalization induced topographic, hydrologic, and land use changes in Olero Creek, Benin River owing to petroleum exploration activities. Environmental Monitoring and Assessment. 2021; 193(8). doi: 10.1007/s10661-021-09319-0
48. Ohimain EI, Bamidele JF, Omisore OO. The Impacts of Micro-Topographic Changes on Mangroves in the Lower Reaches of the Benin River, Niger Delta. Environmental Research Journal. 2010; 4(1): 167-172. doi: 10.3923/erj.2010.167.172
49. Adoki A. Trends in vegetation cover changes in Bonny area of the Niger Delta. Journal of Applied Sciences and Environmental Management. 2013; 17(1): 89-103