Recently, Agile project management has received significant academic and industry attention from due to its advantages, such as decreased costs and time, increased effectiveness, and adaptiveness towards challenging business environments. This study primarily aims to investigate the relationship between the success factors and Agile project management methodology adoption and examine the moderating effect of perceived compatibility. The technology-organization-environment (TOE) framework and technology acceptance theories (UTAUT, IDT, and TAM) were applied as the theoretical foundation of the current study. A survey questionnaire method was employed to achieve the study objectives, while quantitative primary data were gathered using a carefully designed methodological approach focusing on Omani oil and gas industry. The PLS-SEM technique and SmartPLS software were used for hypotheses testing and data analysis. Resultantly, readiness, technology utilization, organizational factors, and perceived compatibility were the significant factors that promoted Agile methodology adoption in the oil and gas industry. Perceived compatibility moderated the relationship between success factors and Agile methodology. The findings suggested that people, technology, and organizational factors facilitate the Agile methodology under the technology acceptance theories and frameworks. Relevant stakeholders should adopt the study outcomes to improve Agile methodology adoption.
This research article examines the relationship between the level of social welfare expenditure and economic growth rates, based on unbalanced panel data from 38 OECD countries covering the period from 1985 to 2022. Four hypotheses are formulated regarding the impact of social expenditure on economic growth rates. Through multiple iterations of regression model building, employing various combinations of dependent and independent variables, and conducting tests for stationarity and causality, compelling empirical evidence was obtained on the negative influence of social welfare spending on economic growth rates. The study takes into account both government and non-governmental expenditures on social welfare, a novelty in this field. This approach allows for a detailed examination of the effects of different components on economic growth and provides a more comprehensive understanding of the relationships. The findings indicate that countries with high levels of social welfare spending experience a slowdown in economic growth rates. This is associated with increasing demands on social security systems, their growing inclusivity, and the escalating required levels of financing, which are increasingly covered by debt sources. The research highlights the need to strike a balance between social expenditures and economic growth rates and proposes a set of measures to ensure economic growth outpaces the indexing of social expenditures. The abstract underscores the relevance of the study in light of the widespread recognition of the necessity to combat inequality, poverty, and destitution, and calls on OECD countries’ governments to pay increased attention to social policy in order to achieve sustainable and balanced economic growth.
Social media has become one of the primary sources of communication, information, entertainment, and learning for users. Children gain several benefits as social media helps them acquire formal and informal learning opportunities. This research also examined the effect of social media on formal and informal learning among school-level children in Ajman, United Arab Emirates (UAE), moderated by social integrative and personal integrative needs. Data was gathered by using structured questionnaires, which were distributed among a sample of 364 children. Results revealed that social media significantly affects Informal and formal learning among children, indicating its usefulness in child education and development. The results also indicated a significant moderation of social integrative needs on social media’s direct effect on informal learning, indicating the relevant needs as an important motivating factor. However, the moderation of personal integrative needs on social media’s direct effect on formal learning remained insignificant. Overall, this research highlighted the role of social media in providing learning opportunities for children in the UAE. It is concluded that children actively seek gratifications from social media, shaping their learning within structured educational contexts in their daily lives. Through the lens of UGT, certain needs play a critical role in strengthening the gratification process, affecting how children derive learning advantages from their interactions on social media platforms. Finally, implications and limitations are discussed accordingly.
Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
Research has shown that understanding the fundamental of public support for carbon emission reduction policies may undermine policy formulation and implementation, yet the direction of influence and the transmission mechanism remain unclear. Using data from using data from 1482 questionnaires conducted in Hangzhou, China, this paper has examined a comprehensive model of the factors and paths influencing public support for carbon emission reduction policies, and evaluated the determinants and predictors of policy support regarding individual psychological perceptions, social-contextual perceptions, and perceptions of policy features. The results show that the variables in both the individual psychological perception and social contextual perception dimensions have no significant effect on carbon tax, however, be important constructure in carbon trading; in the policy characteristics perception dimension, both variables have a significant positive effect on both carbon tax and carbon trading, and are also the strongest predictors of policy support for carbon policies. Further evidence suggests that future policies could be more acceptable to residents by strengthening their environmental values, social norms can further arouse residents’ social responsibility to care about climate, and whether the policy is effective or fair to help residents realize the importance of the policy as well as the need for their participation and willingness to dedicate themselves to the mitigation of climate change.
This financial modelling case study describes the development of the 3-statement financial model for a large-scale transportation infrastructure business dealing with truck (and some rail) modalities. The financial modelling challenges in this area, especially for large-scale transport infrastructure operators, lie in automatically linking the operating activity volumes with the investment volumes. The aim of the paper is to address these challenges: The proposed model has an innovative retirement/reinvestment schedule that automates the estimation of the investment needs for the Business based on the designated age-cohort matrix analysis and controlling for the maximum service ceiling for trucks as well as the possibility of truck retirements due to the reduced scope of tracking operations in the future. The investment schedule thus automated has a few calibrating parameters that help match it to the current stock of trucks/rolling stock in the fleet, making it to be a flexible tool in financial modelling for diverse transport infrastructure enterprises employing truck, bus and/or rail fleets for the carriage of bulk cargo quantifiable by weight (or fare-paying passengers) on a network of set, but modifiable, routes.
Copyright © by EnPress Publisher. All rights reserved.