We analyze Thailand’s projected 2023–2030 energy needs for power generation using a constructed linear programming model and scenario analysis in an attempt to find a formulation for sustainable electricity management. The objective function is modeled to minimize management costs; model constraints include the electricity production capacity of each energy source, imports of electricity and energy sources, storage choices, and customer demand. Future electricity demands are projected based on the trend most closely related to historical data. CO2 emissions from electricity generation are also investigated. Results show that to keep up with future electricity demands and ensure the country’s energy security, energy from all sources, excluding the use of storage systems, will be necessary under all scenario constraints.
There are several methods in the literature to find the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems. However, in all these methods, it is assumed that the product of two trapezoidal (triangular) fuzzy numbers will also be a trapezoidal (triangular) fuzzy number. Fan et al. (“Generalized fuzzy linear programming for decision making under uncertainty: Feasibility of fuzzy solutions and solving approach”, Information Sciences, Vol. 241, pp. 12–27, 2013) proposed a method for finding the fuzzy optimal solution of FFLP problems without considering this assumption. In this paper, it is shown that the method proposed by Fan et al. (2013) suffer from errors and to overcome these errors, a new method (named as Mehar method) is proposed for solving FFLP problems by modifying the method proposed by Fan et al. (2013) . To illustrate the proposed method, some numerical problems are solved.
In learning, one of the fundamental motivating factors is self-efficacy. Therefore, it is crucial to understand the level of students’ self-efficacy in learning programming. This article presents a quantitative study on undergraduate students’ perceived programming self-efficacy. 110 undergraduate computing students took part in this survey to assess programming self-efficacy. Before being given to the respondents, the survey instrument, which included a 28-item self-efficacy assessment and 30 multiple-choice programming questions, was pilot-tested. The survey instrument had a reliability of 0.755. The study results show that the students’ self-efficacy was low when they solved complex programming tasks independently. However, they felt confident when there was an assistant to guide them through the tasks. From this study, it could be concluded that self-efficacy is an essential achievement component in programming courses and can avoid education dropouts.
Given the large amount of railway maintenance work in China, whereas the maintenance time window is continuously compressed, this paper proposes a novel network model-based maintenance planning and optimization method, transforming maintenance planning and optimization into an integer linear programming problem. Based on the dynamic inspection data of track geometry, the evaluation index of maintenance benefit and the model of the decay and recovery of the track geometry are constructed. The optimization objective is to maximize the railway network’s overall performance index, considering budget constraint, maximum length constraint, maximum number of maintenance activities within one single period constraint, and continuity constraint. Using this method, the track units are divided into several maintenance activities at one time. The combination of surrounding track units can be considered for each maintenance activity, and the specific location, measure, time, cost, and benefit can be determined. Finally, a 100 km high-speed railway network case study is conducted to verify the model’s effectiveness in complex optimization scenarios. The results show that this method can output an objective maintenance plan; the combination of unit track sections can be considered to expand the scope of maintenance, share the maintenance cost and improve efficiency; the spatial-temporal integrated maintenance planning and optimization can be achieved to obtain the optimal global solution.
Copyright © by EnPress Publisher. All rights reserved.