Tomato (Solanum lycopersicon L.) is a highly valued crop in the world, particularly in Nigeria with high nutritional and economic benefits. However, its production in Iwollo, Southeast Nigeria, is constrained by unfavorable weather conditions. To address this, a study was conducted at the Teaching and Research Farm, Department of Horticultural Technology, Enugu State Polytechnic, Iwollo, Southeast Nigeria to evaluate and select the best cultivar for high tunnel production using the Rank Summation Index. Completely Randomized Design with three replications was used, and six high-yielding cultivars, namely Roma VF, BHN-1021, Supremo, Pomodro, Money maker, and Iwollo local, were evaluated. Data were collected on key agronomic characters and analyzed with Analysis of Variance (ANOVA) at a 0.05 level of probability. There were significant differences in the number of leaves per plant, plant height, number of branches per plant, days to fruit maturity, fresh fruit weight, number of harvested fresh fruits per plant, and fresh fruit yield per plant among the cultivars. These characters that showed significant differences were ranked and summed up to obtain the Rank Summation Index (RSI) score. The results revealed that the Supremo cultivar had the lowest and best score (18). This suggests Supremo as the best cultivar for high tunnel tomato production in the study area, based on its superior performance across key agronomic traits.
Soil salinity is a major abiotic stress that drastically hinders plant growth and development, resulting in lower crop yields and productivity. As one of the most consumed vegetables worldwide, tomato (Solanum lycropersicum L.) plays a key role in the human diet. The current study aimed to explore the differential tolerance level of two tomato varieties (Rio Grande and Agata) to salt stress. To this end, various growth, physiological and biochemical attributes were assessed after two weeks of 100 mM NaCl treatment. Obtained findings indicated that, although the effects of salt stress included noticeable reductions in shoots’ and roots’ dry weights and relative growth rate as well as total leaf area, for the both cultivars, Rio Grande performed better compared to Agata variety. Furthermore, despite the exposure to salt stress, Rio Grande was able to maintain an adequate tissue hydration and a high leaf mass per area (LMA) through the accumulation of proline. However, relative water content, LMA and proline content were noticeably decreased for Agata cultivar. Likewise, total leaf chlorophyll, soluble proteins and total carbohydrates were significantly decreased; whereas, malondialdehyde was significantly accumulated in response to salt stress for the both cultivars. Moreover, such negative effects were remarkably more pronounced for Agata relative to Rio Grande cultivar. Overall, the current study provided evidence that, at the early growth stage, Rio Grande is more tolerant to salt stress than Agata variety. Therefore, Rio Grande variety may constitute a good candidate for inclusion in tomato breeding programs for salt-tolerance and is highly recommended for tomato growers, particularly in salt-affected fields.
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
Bangladesh’s coastal regions are rich in saline water resources. The majority of these resources are still not being used to their full potential. In the southern Bangladeshi region of Patuakhali, research was conducted to investigate the effects of mulching and drip irrigation on tomato yield, quality, and blossom-end rot (BER) at different soil salinity thresholds. There were four distinct treatments applied: T1= drip irrigation with polythene mulch, T2 = drip irrigation with straw mulch, T3 = drip irrigation without mulch, and T4 = standard procedure. While soil salinity was much greater in treatment T3 (1.19–8.42 dS/m) fallowed by T4 (1.23–8.63 dS/m), T1 treatments had the lowest level of salinity and the highest moisture retention during every development stage of the crops, ranging from 1.28–4.29 dS/m. Treatment T3 exhibited the highest soil salinity levels (ranging from 1.19 to 8.42 dS/m), followed by T4 with a range of 1.23 to 8.63 dS/m. In contrast, T1 treatments consistently maintained the lowest salinity levels (ranging from 1.28 to 4.29 dS/m) and the highest moisture retention throughout all stages of crop development. In terms of yield, drip irrigation with no mulch treatment (T3) provided the lowest output (13.37 t/ha), whereas polyethylene mulching treatment (T1) produced the maximum yield (46.04 t/ha). According to the study, conserving moisture in tomato fields and reducing soil salinity may both be achieved with drip irrigation combined with polythene mulch. The research suggests that employing drip irrigation in conjunction with polythene mulch could effectively preserve moisture in tomato fields and concurrently decrease soil salinity.
Copyright © by EnPress Publisher. All rights reserved.