MXenes are one of the most important classes of materials discussed worldwide by many researchers of diverse fields for diverse applications in recent years. It is a nanomaterial with a wide range of applications due to its multiple forms and structures with fascinating properties, for example, high surface area and porosity, biocompatibility, ease of fictionalizing with various active chemical moieties, benefit of high metallic conductivity, activated metallic hydroxide sites, and sensitivity to moisture. MXenes have great chances for potential applications in environmental issues, water purification, biological applications, and energy storage devices and sensors. MXenes show great selectivity towards the absorption of heavy metals and a good capability to reduce chemical and biological pollutants present in the water. The present review article critically analyzed advancements in water purification using the adsorption and reduction abilities of MXenes and their composites. The mechanism of various procedures, important challenges, and associated problems using MXene and their composites are discussed in detail. The future research directions can be extracted from this article efficiently and comprehensively. The energy storage issues of rechargeable lithium-ion batteries, batteries other than lithium-ion batteries, and electrochemical capacitors are also discussed in detail.
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Copyright © by EnPress Publisher. All rights reserved.