Agroforestry holds the key in providing alternative economically viable livelihood development and to support mountainous farmers to adapt to climate change. Innovative agroforestry interventions integrating animal production, horticulture etc into cropping systems exist that can help farmers improve yields and build resilience for supporting livelihoods particularly among marginal communities. But, the lack of knowledge, technical know-how and other information among the farmers are major barriers in adoption of agroforestry. Millions of the farmers of mountainous regions are already wrestling with water scarcity, which would be more severe in climate change scenario. The Himalayan regions are have been considered to be highly sensitive to climate change. Indeed, Innovative agroforestry interventions have the potential to conserve natural resources, improve productivity and provide resilience to climate change. The present paper highlights the need for developing innovative agroforestry interventions to promote various alternate livelihood options through diversification, adoption of high yielding varieties and development of innovative products from forest resources. Of these spice based agroforetry, silvi-medicinal systems, Van silk cultivation, bamboo and ringal cultivation and development and use of farm resources based products like bamboo based composite structures, Seabuckthorn herbal tea, Ghingaroo juice (Crataegus crenulata) and incense products etc holds a promising potential to be explored as better options for future scenario.
The effects of climate change are already being felt, including the failure to harvest several agricultural products. On the other hand, peatland requires good management because it is a high carbon store and is vulnerable as a contributor to high emissions if it catches fire. This study aims to determine the potential for livelihood options through land management with an agroforestry pattern in peatlands. The methods used are field observation and in-depth interviews. The research location is in Kuburaya Regency, West Kalimantan, Indonesia. Several land use scenarios are presented using additional secondary data. The results show that agroforestry provides more livelihood options than monoculture farming or wood. The economic contribution is very important so that people reduce slash-and-burn activities that can increase carbon emissions and threaten the sustainability of peatland.
In Côte d’Ivoire, the government and its development partners have implemented a national strategy to promote agroforestry and reforestation systems as a means to combat deforestation, primarily driven by agricultural expansion, and to increase national forest cover to 20% by 2045. However, the assessment of these systems through traditional field-based methods remains labor-intensive and time-consuming, particularly for the measurement of dendrometric parameters such as tree height. This study introduces a remote sensing approach combining drone-based Airborne Laser Scanning (ALS) with ground-based measurements to enhance the efficiency and accuracy of tree height estimation in agroforestry and reforestation contexts. The methodology involved two main stages: first, the collection of floristic and dendrometric data, including tree height measured with a laser rangefinder, across eight (8) agroforestry and reforestation plots; second, the acquisition of ALS data using Mavic 3E and Matrice 300 drones equipped with LiDAR sensors to generate digital canopy models for tree height estimation and associated error analysis. Floristic analysis identified 506 individual trees belonging to 27 genera and 18 families. Tree height measurements indicated that reforestation plots hosted the tallest trees (ranging from 8 to 16 m on average), while cocoa-based agroforestry plots featured shorter trees, with average heights between 4 and 7 m. A comparative analysis between ground-based and LiDAR-derived tree heights showed a strong correlation (R2 = 0.71; r = 0.84; RMSE = 2.24 m; MAE = 1.67 m; RMSE = 2.2430 m and MAE = 1.6722 m). However, a stratified analysis revealed substantial variation in estimation accuracy, with higher performance observed in agroforestry plots (R2 = 0.82; RMSE = 2.21 m and MAE = 1.43 m). These findings underscore the potential of Airborne Laser Scanning as an effective tool for the rapid and reliable estimation of tree height in heterogeneous agroforestry and reforestation systems.
Copyright © by EnPress Publisher. All rights reserved.