1. FAO (Food and Agriculture Organization). Global forest resources assessment 2020: Main report. Food and Agriculture Organization. FAO; 2020.
2. Hansen MC, Potapov PV, Moore R, et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 2013; 342(6160): 850-853. doi: 10.1126/science.1244693
3. SEP-REDD+, FAO. Baseline forest data for REDD+ in Côte d’Ivoire - Mapping forest dynamics from 1986 to 2015 (French). FAO; 2017.
4. Vaudry R, Nourtier M, Bello A, Traoré Y. Qualitative analysis of drivers of deforestation and forest degradation in Côte d’Ivoire (French). Ministry of the Environment and Sustainable Development; 2016.
5. Coffee-Cocoa Council. Guidelines for agroforestry in cocoa production in Côte d’Ivoire (French). Coffee-Cocoa Council; 2023.
6. Dubayah RO, Drake JB. Lidar Remote Sensing for Forestry. Journal of Forestry. 2000; 98(6): 44-46. doi: 10.1093/jof/98.6.44
7. Perrin G. Study of forest cover by marked punctual processes [PhD thesis] (French). Centrale Paris Doctoral School; 2006.
8. Doyon F, Sénécal JF, Rochon P. Application of irregular silviculture to hardwood stands deemed unsuitable for gardening. Prediction of gap age and gap type by LiDAR remote sensing in old maple stands. Institut Québécois Forest Management Agency; 2011.
9. Hill J, Lee G, Henry R. Wide-area topographic mapping and applications using airborne light detection and ranging (LIDAR) technology. Photogrammetric Engineering & Remote Sensing. 2000; 66(8): 908--914.
10. Dickie S. Application of airborne scanning LIDAR to forestry: Examining stand height and crown closure in annapolis county, Nova Scotia. COGS; 2001.
11. Tarsha Kurdi F, Lewandowicz E, Shan J, et al. Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2024; 17: 3010-3022. doi: 10.1109/jstars.2024.3349549
12. Oliveira PVC, Zhang HK, Zhang X. Estimating Brazilian Amazon Canopy Height Using Landsat Reflectance Products in a Random Forest Model with Lidar as Reference Data. Remote Sensing. 2024; 16(14): 2571. doi: 10.3390/rs16142571
13. Ferraz A, Saatchi S, Kellner J, et al. Improving Carbon Estimation of Large Tropical Trees by Linking Airborne Lidar Crown Size to Field Inventory. In: Proceedings of the IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium; 2018.
14. Tarsha Kurdi F, Lewandowicz E, Gharineiat Z, et al. Accurate Calculation of Upper Biomass Volume of Single Trees Using Matrixial Representation of LiDAR Data. Remote Sensing. 2024; 16(12): 2220. doi: 10.3390/rs16122220
15. Tarsha Kurdi F, Gharineiat Z, Lewandowicz E, et al. Modeling the Geometry of Tree Trunks Using LiDAR Data. Forests. 2024; 15(2): 368. doi: 10.3390/f15020368
16. Cevik IC, Atik ME, Duran Z. Investigation of Optimal Ground Control Point Distribution for Geometric Correction of VHR Remote Sensing Imagery. Journal of the Indian Society of Remote Sensing. 2024; 52(2): 359-369. doi: 10.1007/s12524-024-01826-0
17. Fitriawan D, Arif DA. A comparison of GNSS measurement methods for orthorectification of high-resolution satellite images: A case study of Worldview-2 and Geoeye-1 satellite images in Padang city, West Sumatera, Indonesia. In: Advances in geoscience and remote sensing technology. Springer; 2024.
18. Wulder MA, Bater CW, Coops NC, et al. The role of LiDAR in sustainable forest management. The Forestry Chronicle. 2008; 84(6): 807-826. doi: 10.5558/tfc84807-6
19. Štroner M, Urban R, Křemen T, et al. UAV DTM acquisition in a forested area – comparison of low-cost photogrammetry (DJI Zenmuse P1) and LiDAR solutions (DJI Zenmuse L1). European Journal of Remote Sensing. 2023; 56(1). doi: 10.1080/22797254.2023.2179942
20. ASPRS. ASPRS Positional Accuracy Standards for Digital Geospatial Data. Photogrammetric Engineering & Remote Sensing. 2015; 81(3): 1-26. doi: 10.14358/pers.81.3.a1-a26
21. Lim K, Treitz P, Baldwin K, et al. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Canadian Journal of Remote Sensing. 2003; 29(5): 658-678. doi: 10.5589/m03-025
22. Piney I. Comparison of Canopy Hole Characterization Protocols on Aerial Photo Time Series: Application to Disturbance Regime Characterization [Master’s thesis] (French). Paul Verlaine University of Metz; 2010.
23. Ouattara TA, Sokeng VCJ, Zo-Bi IC, et al. Detection of Forest Tree Losses in Côte d’Ivoire Using Drone Aerial Images. Drones. 2022; 6(4): 83. doi: 10.3390/drones6040083
24. McRoberts RE, Reams GA, Van Deusen PC, McWilliams WH. Proceedings of the seventh annual forest inventory and analysis symposium. United States Department of Agriculture, Forest Service; 2005.
25. Peterson B, Dubayah R, Hyde P, et al. Use of LIDAR for forest inventory and forest management application. Northern Research Station; 2007.
26. Kombate A, Fotso Kamga GA, Goïta K. Modeling Canopy Height of Forest–Savanna Mosaics in Togo Using ICESat-2 and GEDI Spaceborne LiDAR and Multisource Satellite Data. Remote Sensing. 2024; 17(1): 85. doi: 10.3390/rs17010085
27. Brou AL, Akpa L, Kassi J, et al. Drone-based estimation of trees biophysical parameters in complex cocoa-based agroforestry systems. In: Proceedings of the International Symposium on Cocoa Research 2022 - ISCR 2022; 2023.
28. Obeirne D. Measuring the urban forest: comparing LiDAR derived tree heights to field measurements [Master’s thesis]. San Francisco State University; 2012.
29. Shannon ES, Finley AO, Hayes DJ, et al. Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy ALS: A Bayesian model approach. arxiv; 2022.
30. Clark ML, Clark DB, Roberts DA. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment. 2004; 91(1): 68-89. doi: 10.1016/j.rse.2004.02.008
31. Maguya A, Junttila V, Kauranne T. Algorithm for Extracting Digital Terrain Models under Forest Canopy from Airborne LiDAR Data. Remote Sensing. 2014; 6(7): 6524-6548. doi: 10.3390/rs6076524
32. Jagoret P, Michel-Dounias I, Malézieux E. Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agroforestry Systems. 2011; 81(3): 267-278. doi: 10.1007/s10457-010-9368-x
33. Sanial E, Ruf F, Louppe D, et al. Local farmers shape ecosystem service provisioning in West African cocoa agroforests. Agroforestry Systems. 2022; 97(3): 401-414. doi: 10.1007/s10457-021-00723-6
34. Kouassi AK, Zo-Bi IC, Aussenac R, et al. The great mistake of plantation programs in cocoa agroforests – Let’s bet on natural regeneration to sustainably provide timber wood. Trees, Forests and People. 2023; 12: 100386. doi: 10.1016/j.tfp.2023.100386
35. Peng X, Zhao A, Chen Y, et al. Tree Height Measurements in Degraded Tropical Forests Based on UAV-LiDAR Data of Different Point Cloud Densities: A Case Study on Dacrydium pierrei in China. Forests. 2021; 12(3): 328. doi: 10.3390/f12030328
36. Aijazi A, Checchin P, Malaterre L, et al. Automatic Detection and Parameter Estimation of Trees for Forest Inventory Applications Using 3D Terrestrial LiDAR. Remote Sensing. 2017; 9(9): 946. doi: 10.3390/rs9090946
37. Oehmcke S, Li L, Trepekli K, et al. Deep point cloud regression for above-ground forest biomass estimation from airborne LiDAR. Remote Sensing of Environment. 2024; 302: 113968. doi: 10.1016/j.rse.2023.113968
38. Xiang B, Wielgosz M, Kontogianni T, et al. Automated forest inventory: analysis of high-density airborne LiDAR point clouds with 3D deep learning. arxiv; 2023.
39. Sheng Y, Zhao Q, Wang X, et al. Tree Diameter at Breast Height Extraction Based on Mobile Laser Scanning Point Cloud. Forests. 2024; 15(4): 590. doi: 10.3390/f15040590