In the present research work, we investigated the use of the image intensifier in the extraction of radiopaque foreign bodies in traumatology. First of all, it is necessary to clarify that this method constitutes an essential component of practically generalized use, in which low current level radiation is used, that is, fluoroscopic radiation, so that it can be applied for a considerably longer time than that of the longest radiographic exposure. This tool works with a tube intended for this purpose, which is known as fluoroscopy. The radiations from the tube pass through the patient and reach the serigraph, on which the image intensifier or fluoroscopic screen is mounted. In the latter case, this is where the chain ends, since it is on this screen that the image is formed and where the physician directly observes the region to be studied. It is also necessary to define that a foreign body is any element foreign to the body that enters it, either through the skin or through any natural orifice such as the eyes, nose, throat, preventing its normal functioning. It was possible to obtain as a result that the advantages of fluoroscopic navigation are the reduction of surgical time and the amount of irradiation, which goes from about 140 seconds without navigation to only 8 seconds, which is a substantial difference. Among the conclusions, it was possible to highlight that in the case of a radiopaque object, it is essential to have an image intensifier for localization of the foreign body during surgery; while in the case of a radiolucent foreign body, it is more advisable to locate it through the clinic, since these tend to form granulomas.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
In recent years, ghost imaging has made important progress in the field of remote sensing imaging. In order to promote the application of solar ghost imaging in this field, this paper studies the computational ghost imaging based on the incoherent light of blackbody radiation. Firstly, according to the intensity probability density function of blackbody radiation, the expression of contrast-to-noise ratio (RCN) describing the quality of computational ghost imaging is obtained, and then the random speckle pattern simulating blackbody radiation is generated by computer with the idea of slice sampling, finally, a digital light projector is used to modulate and generate the random modulated light that simulates the blackbody radiation light source, and this light source is used to realize the computational ghost image of the reflective object in the experiment. The “ghost image” of the object under different measurement frame numbers is reconstructed, and the contrast-to-noise ratio describing the imaging quality is measured. The results show that the image quality is relatively good when the average intensity (gray) of the randomly modulated speckle is about 160. On the other hand, the contrast-to-noise ratio of the image gradually increases from 0.8795 to 1.241, 1.516, 1.755, 2.100 and 2.371 as the number of measurement frames increases from 2,000 to 4,000, 6,000, 8,000, 12,000 and 20,000, respectively. The experimental results are basically consistent with the theoretical analysis. The results are of great significance for the application of ghost imaging with incoherent light, such as sunlight, which is approximately regarded as blackbody radiation, in the field of remote imaging.
Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells within the bone marrow. It is the most serious form of plasma cell dyscrasias, whose complications—hypercalcemia, renal failure, anemia, and lytic bone lesions—are severe and justify the therapeutic management. Imaging of bone lesions is a cardinal element in the diagnosis, staging, study of response to therapy, and prognostic evaluation of patients with MM. Historically, the skeletal radiographic workup (SRW), covering the entire axial skeleton, has been used to detect bone lesions. Over time, new imaging techniques that are more powerful than SRW have been evaluated. Low-dose and whole-body computed tomography (CT) supplants SRW for the detection of bone involvement, but is of limited value in assessing therapeutic response. Bone marrow MRI, initially studying the axial pelvic-spinal skeleton and more recently the whole body, is an attractive alternative. Beyond its non-irradiating character, its sensitivity for the detection of marrow damage, its capacity to evaluate the therapeutic response and its prognostic value has been demonstrated. This well-established technique has been incorporated into disease staging systems by many health systems and scientific authorities. Along with positron emission tomography (PET)-18 fluorodeoxyglucose CT, it constitutes the current imaging of choice for MM. This article illustrates the progress of the MRI technique over the past three decades and situates its role in the management of patients with MM.
This study was carried out at the Teaching and Research Farm of Landmark University, Omu-Aran. Treatments consisted of 3 levels of cocoa pod husk ash (0, 2 and 4 tonnes CPHA ha-1), 3 levels of cocoa pod husk powder (0, 2 and 4 tonnes CPHP ha-1), NPK and the control. The experiment was laid out in a Randomized Complete Block Design (RCBD) replicated four times. The following parameters were taken plant height, number of leaves (at 2, 3, and 4 weeks after sowing), total plant weight, root weight, leaf weight, roots girth and roots length. Data collected were subjected to Analysis of Variance (ANOVA) Using S.A.S, 2000. Treatment means were compared using Duncan Multiple Range Test (DMRT) at 0.05 level of probability. Results showed that chemical analysis of cocoa pod ash and powder contained plant nutrients as N, P, K, Ca, Mg and some other micronutrients in varying proportions. Application of CPHA 4 + CPHP 2 gave higher values for all the vegetative parameters. The implication of this study is that high level of cocoa pod husk powder in combination with high level of cocoa pod husk ash is detrimental to radish cultivation. In the same vein, the nutrition of radish was incomplete when NPK fertilizer was applied. It can therefore be recommended that the use of combined application of cocoa pod ash and cocoa pod powder at CPHA4 + CPHP2 was sufficient for the cultivation of radish (Raphanus sativus) in the study area as it compete favorably with application of NPK fertilizer.
The structure, thermodynamic stability, ionization potential (IP) and electron affinity (EA) energy level difference (Eg) and tension of lowest unoccupied orbit (LUMO) and highest occupied orbit (HOMO) of armchair single wall carbon nanotubes (C-NTs), BN hybrid carbon nanotubes (BC2N-NTs) and all BN nanotubes (BN-NTs) were systematically studied with AM1 method in this paper. Calculation results show that when n value is constant, (n, n) C-NTs (n = 3,4,5,6) has the largest diameter and BN-NTs has the smallest diameter; (n, n) the values of Eg (HOMO-LUMO) and n of C-NTs and BC2N-NTs are related; POAV analysis shows that different hybrid atoms have different contributions to the hybrid mode of nanotube atoms and the tension of nanotubes.
Copyright © by EnPress Publisher. All rights reserved.