Under the background of the development of the network information age, the current Internet industry has obtained more development opportunities, but it has also brought corresponding challenges in the process of wide application. In the development and construction of modernization, society pays more attention to the supervision and determination of the characteristics of online public opinion. From the perspective of the current characteristics of network public opinion, because social information is more extensive and involves many fields, network public opinion has a high degree of complexity and diffusion. Therefore, it is necessary to strengthen the analysis and application of relevant data mining systems in order to achieve efficient management of network public opinion. The key to the disadvantage of the traditional excavation of public opinion communication characteristics lies in the lag of the excavation process, and it is difficult to deal with malignant public opinion in a timely and effective manner. Therefore, in order to truly solve the lagging problem of public opinion data dissemination feature mining technology, it is necessary to strengthen the application of artificial intelligence technology in it.
The advent of the era of big data has brought great changes to accounting work, and vocational colleges and universities, as the main place for cultivating application-oriented new business talents, need to change the way of talent training in time in the face of this change. By describing the impact of the era of big data on the demand for new business talents, this paper analyzes the analysis of the training of new business and scientific and technological talents in vocational colleges and universities in the era of big data from the perspectives of talent training target positioning, professional curriculum setting and teacher quality, accurately locates the talent training goals of new business professional groups in vocational colleges, scientifically sets up the curriculum system, and comprehensively improves the teaching staff.
Purpose: Drawing on the Resource Based View (RBV) and Dynamic Capabilities Theory (DCT), the study seeks to investigate the impact of Big Data Analytics (BDA) on Project Success (PS) through Knowledge Sharing (KS) and Innovation Performance (IPF). Design/Methodology: Survey data were collected from 422 senior-level employees in IT companies, and the proposed relationships were assessed using the SMART-PLS 4 Structural Equation Modeling tool. Findings: The results show a positive and significant indirect effect of big data analytics on project success through knowledge sharing. IPF significantly mediated the relationship between BDA and PS in IT companies. Originality/Value: This study is one of the first to consider big data analytics as an essential antecedent of project success. With little or no research on the interrelationship of big data analytics, knowledge sharing, innovation performance, and organizational performance, the study investigates the mediating role of knowledge sharing and innovation performance on the relationship between BDA and PS. Implications: This study, grounded in RBV and DCT, investigates BDA’s influence on PS through KS and IPF. Implications encompass BDA’s strategic role, KS and IPF mediation, and practical and research-based insights. Findings guide BDA integration, collaborative cultures, and sustained success.
In the context of big data, the teaching of financial accounting for vocational undergraduate students needs to be continuously optimized and innovated. This article provides a brief analysis of the current situation of financial accounting teaching for vocational undergraduate students. It also analyzes the phenomena of outdated teaching concepts, outdated teaching content, and unreasonable teaching objectives in the current teaching of financial accounting for vocational undergraduate students. It proposes the idea of innovating teaching concepts in current teaching work, clarifying teaching objectives, integrating flipped classroom reform teaching mode, and introducing project-based teaching method to improve teaching efficiency, so as to achieve more efficient teaching guidance for students.
Purpose: This study empirically investigates the effect of big data analytics (BDA) on project success (PS). Additionally, in this study, the investigation includes an examination of how intellectual capital (IC) and (KS) act as mediators in the correlation between BDA and KS. Lastly, a connection between entrepreneurial leadership (EL) and BDA is also explored. Design/Methodology- Using a sample of 422 senior-level employees from the IT sector in Peru. The partial least squares structural equation modeling technique tested the hypothesized relationships. Findings- According to the findings, the relationship between BDA and PS is mediated by structural capital (SC) and relational capital (RC), and BDA demonstrates a positive and noteworthy correlation with PS. Furthermore, EL is positively associated with BDA in a significant manner. Practical implications- The finding of this study reinforce the corporate experience of BDA and suggest how senior levels of the IT sector can promote SC, RC, and EL. Originality/Value- This study is one of the first to consider big data analytics as an important antecedent of project success. With little or no research on the interrelationship of big data analytics, intellectual capital and knowledge sharing the study contributes by investigating the mediating role of intellectual capital and knowledge sharing on the relationship between big data analytics and project success.
Targeted Poverty Alleviation refers to the targeted funding work completed in the process of higher education development. However, at present, in the process of implementing the requirements of Targeted Poverty Alleviation in China's universities, some students' families are difficult to complete identification, and there are also some problems in the information management of the funders, which has seriously affected the funding for students with financial difficulties in their families during the period of higher education in China. With the rapid development and progress of Big data technology, through the establishment of a sound information technology system, we must help students actively change the funding model in the future and greatly improve the funding, which is of great significance to the development of university funding supervision and management.
Copyright © by EnPress Publisher. All rights reserved.