Simple mathematical expressions are given for the betweenness centrality of nodes in trees, forests and cycles. As application, a centrality test is given for when a network might be a forest.
While there has been much discussion about the large infrastructure needs in Asia and the Pacific, less attention has been paid to public expenditure efficiency in infrastructure services delivery. New constructions are not the only solution, especially when governments have limited capital to invest. Globally, new infrastructure projects face delays and cost overruns, leading to an inefficient use of public resources. The root causes include the lack of transparency in project selection, the lack of project preparation, the silo approach by public entities in assessing feasibility studies, and the lack of public sector capacity to fully develop a bankable pipeline of projects. To tackle these issues, governments need a smarter investment approach and to do so, enhancing public service efficiency is very crucial. The paper suggests a “whole life cycle” (WLC) approach as the main strategic solution for the discussed issues and challenges. We expand the definition of WLC to include the entire life cycle of the infrastructure asset from need identification to its disposal. The stages comprise planning, preparation, procurement, design, construction, operation and maintenance, and disposal. This is because we believe any efficient or inefficient decision throughout such a wide life cycle influences the quality of public services. Hence, in this holistic approach, infrastructure life cycle consists of four phases: planning, preparation, procurement, and implementation. Governments could enhance public efficiency and thus improve access to finance throughout the WLC by several solutions. These are (i) preparing infrastructure master plan and pipelines and long-term budgeting during the planning phase; (ii) establishing framework and guidelines and improving governance during preparation phase; (iii) promoting standardization, transparency, open government, and contractual consistency during the procurement phase; and finally (iv) continued role of government and total asset management during the implementation phase. In addition to these phase-specific means, key WLC solutions include proper use of technology, capacity building, and private participation in general and public-private partnership (PPP) in particular.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
Projects implemented under life cycle contracts have become increasingly common in recent years to ensure the quality of construction and maintenance of energy infrastructure facilities. A key parameter for energy facility construction projects implemented under life cycle contracts is their duration and deadlines. Therefore, the systematic identification, monitoring, and comprehensive assessment of risks affecting the timing of work on the design and construction is an urgent practical task. The purpose of this work is to study the strength of the influence of various risks on the duration of a project implemented on the terms of a life cycle contract. The use of the expert assessment method allows for identifying the most likely risks for the design and construction phases, as well as determining the ranges of deviations from the baseline indicator. Using the obtained expert evaluations, a model reflecting the range and the most probable duration of the design and construction works under the influence of risk events was built by the Monte-Carlo statistical method. The results obtained allow monitoring and promptly detecting deviations in the actual duration of work from the basic deadlines set in the life cycle contract. This will give an opportunity to accurately respond to emerging risks and build a mutually beneficial relationship between the parties to life cycle contracts.
Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm−1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm−2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm−2 at a current density of 40 mA cm−2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.
Copyright © by EnPress Publisher. All rights reserved.