Du Y, Xu Y, Zhang Y, et al. Metal-organic-framework-derived cobalt-vanadium oxides with tunable compositions for high-performance aqueous zinc-ion batteries. Chemical Engineering Journal 2023; 457: 141162. doi: 10.1016/j.cej.2022.141162
Zhao X, Mao L, Cheng Q, et al. Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: Zinc and beyond. Energy Storage Materials 2021; 38: 397–437. doi: 10.1016/j.ensm.2021.03.005
Chuhadiya S, Himanshu, Suthar D, et al. Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews 2021; 446: 214115. doi: 10.1016/j.ccr.2021.214115
Hu H, Guan B, Lou X. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 2016; 1(1): 102–113. doi: 10.1016/j.chempr.2016.06.001
Ma C, Yang K, Zhao S, et al. Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Letters 2023; 8(2): 1201–1208. doi: 10.1021/acsenergylett.2c02735
Chen CY, Matsumoto K, Kubota K, et al. A room‐temperature molten hydrate electrolyte for rechargeable zinc-air batteries. Advanced Energy Materials 2019; 9(22): 1900196. doi: 10.1002/aenm.201900196
Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nature Materials 2018; 17(6): 543–549. doi: 10.1038/s41563-018-0063-z
Yang H, Chang Z, Qiao Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angewandte Chemie International Edition 2020; 59(24): 9377–9381. doi: 10.1002/anie.202001844
Naveed A, Yang H, Yang J, et al. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angewandte Chemie International Edition 2019; 58(9): 2760–2764. doi: 10.1002/anie.201813223
Wang N, Yang Y, Qiu X, et al. Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. Chemistry Sustainability Energy Materials 2020; 13(20): 5556–5564. doi: 10.1002/cssc.202001750
Ding Y, Pang Z, Lan K, et al. Emerging engineered wood for building applications. Chemical Reviews 2022; 123(5): 1843–1888. doi: 10.1021/acs.chemrev.2c00450
Dong Q, Zhang X, Qian J, et al. A cellulose-derived supramolecule for fast ion transport. Science Advances 2022; 8(49): eadd2031. doi: 10.1126/sciadv.add2031
Yang Z, Li W, Zhang Q, et al. A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy 2022; 28: 101076. doi: 10.1016/j.mtener.2022.101076
Zhou J, Zhang R, Xu R, et al. Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Advanced Functional Materials 2022; 32(21): 2111406. doi: 10.1002/adfm.202111406
Ma L, Chen S, Wang D, et al. Super‐stretchable zinc-air batteries based on an alkaline‐tolerant dual‐network hydrogel electrolyte. Advanced Energy Materials 2019; 9(12): 1803046. doi: 10.1002/aenm.201803046
Xu W, Liu C, Wu Q, et al. A stretchable solid-state zinc ion battery based on a cellulose nanofiber—Polyacrylamide hydrogel electrolyte and a Mg0.23V2O5 1.0H2O cathode. Journal of Materials Chemistry A 2020; 8(35): 18327–18337. doi: 10.1039/D0TA06467J
Fu J, Wang H, Xiao P, et al. A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Materials 2022; 48: 191. doi: 10.1016/j.ensm.2022.02.052
Glatz H, Lizundia E, Pacifico F, Kundu D. An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane. ACS Applied Energy Materials 2019; 2(2): 1288–1294. doi: 10.1021/acsaem.8b01851
Xu M, Dou H, Zhang Z, et al. Hierarchically nanostructured solid‐state electrolyte for flexible rechargeable zinc-air batteries. Angewandte Chemie International Edition 2022; 134(23): e202117703. doi: 10.1002/ange.202117703
Zhang Y, Chen Y, Li X, et al. Bacterial cellulose hydrogel: A promising electrolyte for flexible zinc-air batteries. Journal of Power Sources 2021; 482: 228963. doi: 10.1016/j.jpowsour.2020.228963
Zhao N, Wu F, Xing Y, et al. Flexible hydrogel electrolyte with superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Applied Materials & Interfaces 2019; 11(17): 15537–15542. doi:
Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 2021; 89: 106322. doi: 10.1016/j.nanoen.2021.106322
Zhou W, Chen M, Tian Q, et al. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials 2022; 44: 57–65. doi: 10.1016/j.ensm.2021.10.002
Liang Y, Ma D, Zhao N, et al. Novel concept of separator design: Efficient ions transport modulator enabled by dual‐interface engineering toward ultra‐stable Zn metal anodes. Advanced Functional Materials 2022; 32(25): 2112936. doi: 10.1002/adfm.202112936
Yang P, Li J, Lee SW, Fan H. Printed zinc paper batteries. Advanced Science 2022; 9(2): 2103894. doi: 10.1002/advs.202103894
Ge X, Zhang W, Song F, et al. Single‐ion‐functionalized nanocellulose membranes enable lean‐electrolyte and deeply cycled aqueous zinc‐metal batteries. Advanced Functional Materials 2022; 32(26): 2200429. doi: 10.1002/adfm.202200429
Cao J, Zhang D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite‐free zinc ion batteries. Advanced Energy Materials 2021; 11(29): 2101299. doi: 10.1002/aenm.202101299
Zhang X, Li J, Liu D, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy & Environmental Science 2021; 14(5): 3120–3129. doi: 10.1039/D0EE03898A
Boruvkova K, Wiener J. Water absorption in carboxymethyl cellulose. AUTEX Research Journal 2011; 11(4): 110–113. doi:
Zheng W, Gao J, Wei Z, et al. Facile fabrication of self-healing carboxymethyl cellulose hydrogels. European Polymer Journal 2015; 72: 514–522. doi: 10.1016/j.eurpolymj.2015.06.013
Zhu Y, Xiao S, Li M, et al. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. Journal of Power Sources 2015; 288: 368–375. doi: 10.1016/j.jpowsour.2015.04.117
Chen M, Chen J, Zhou W, et al. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A 2019; 7(46): 2652
Li H, Liu Z, Liang G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018; 12(4): 3140–3148. doi: 10.1021/acsnano.7b09003
Mugheri AQ, Samtio MS, Sangah AA, et al. Promoting highly dispersed Co3O4 nanoparticles onto polyethyne unraveling the catalytic mechanism with stable catalytic activity for oxygen evolution reaction: From fundamentals to applications. International Journ
Zhou M, Guo S, Li J, et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Advanced Materials 2021; 33(21): 2100187. doi: 10.1002/adma.202100187
Liu Y, Hu J, Lu Q, et al. Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Materials 2022; 47: 98–104. doi: 10.1016/j.ensm.2022.01.059
Zhang B, Qin L, Fang Y, et al. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Science Bulletin 2022; 67(9): 955–962. doi: 10.1016/j.scib.2022.01.027
Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angewandte Chemie International Edition 2022; 134(6): e202112304. doi: 10.1002/ange.202112304
Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. Journal of the American Chemical Society 2017; 139(29): 9775–9778. doi: 10.1021/jacs.7b04471
Wang X, Li Y. Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. Journal of the American Chemical Society 2002; 124(12): 2880–2881. doi: 10.1021/ja0177105