Objective: To determine the presence of bacteria by means of microbiological analysis on the surfaces contacted by the operator during the taking and processing of intraoral radiographs at different times of the day in the Oral Radiology Service of the UPCH. Materials and methods: Nine surfaces of the oral radiology service were sampled. The samples were taken at two times by the same investigator; at the beginning and the end of the activities in the service, the surfaces were swabbed with Trypticase Soy Broth (TSB). The samples were inoculated and incubated in three culture media (Plate Count Agar, Lamb’s Blood Agar and Cetrimide Agar). Then the respective Colony Forming Unit (CFU) count was performed and Gram staining was also performed. Results: A high concentration of bacteria (4180 CFU/mL) and fungi was found in the oral radiology service. Gram-positive cocci were the most frequently found microorganisms and gram-negative bacilli were less frequently found. Conclusions: There is a high contamination of bacteria in the oral radiology service. When the activities are completed, the number of bacteria decreases, but the variety of bacteria increases.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
Copyright © by EnPress Publisher. All rights reserved.