Williams M, Kookana RS. Fate and Behavior of Environmental Contaminants Arising from Health-Care Provision, 1st ed. Elsevier B.V. 2018. doi: 10.1016/b978-0-444-63857-1.00003-6
Kumari A, Maurya NS, Tiwari B. Hospital wastewater treatment scenario around the globe. BV. 2020. doi: 10.1016/B978-0-12-819722-6.00015-8
Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015; 69: 234–242. doi: 10.1016/j.watres.2014.11.021
Chen L, Hu H, Wang A, et al. Applied Surface Science Band-structure tunability via modulation of planar buckling in ZnO monolayer: Manifestation in optoelectronic and photocatalytic properties. Applications of Surface Science. 2024; 661.
Verma R, Pathak S, Srivastava AK, et al. ZnO nanomaterials_ Green synthesis, toxicity evaluation and new insights in biomedical applications. J. Alloys Compd. 2021; 876: 160175. Doi: 10.1016/j.jallcom.2021.160175
Gui Y, Zhu Y, Tian K, et al. Large-scale and green preparation of multifunctional ZnO. Materials Science & Engineering B. 2024; 303.
Frédéric O, Yves P. Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere. 2014; 115: 31–39. doi: 10.1016/j.chemosphere.2014.01.016
Alsharyani AK, Muruganandam L. Fabrication of zinc oxide nanorods for photocatalytic degradation of docosane, a petroleum pollutant, under solar light simulator. RSC Adv. 2024; 14: 9038–9049. doi: 10.1039/d4ra00672k.
Pavithra M, Blair NJ, Raj MBJ. Zn-doped NiO nanocomposites for efficient solar light-assisted wastewater treatment and its profound for low phytotoxic and antibacterial applications. Plant Nano Biol. 2023; 6: 100054. doi: 10.1016/j.plana.2023.100054
Pavithra M, Jessie Raj MB, Influence of ultrasonication time on solar light irradiated photocatalytic dye degradability and antibacterial activity of Pb doped ZnO nanocomposites. Ceram. Int. 2021; 47: 32324–32331. doi: 10.1016/j.ceramint.2021.08.128
Batterjee MG, Nabi A, Kamli MR, et al. Green Hydrothermal Synthesis of Zinc Oxide Nanoparticles for UV-Light-Induced Photocatalytic Degradation of Ciprofloxacin Antibiotic in an Aqueous Environment. Catalysts. 2022; 12: 1–17. doi: 10.3390/catal12111347
Fares MM, Al-Rub FAA, Mohammad AR. Ultimate eradication of the ciprofloxacin antibiotic from the ecosystem by nanohybrid go/o-cnts. ACS Omega. 2020; 5: 4457–4468. doi: 10.1021/acsomega.9b03636
Gonzaga IMD, Moratalla A, Eguiluz KIB, et al. Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chem. Eng. J. 2021; 420. doi: 10.1016/j.cej.2021.129999
Ullah S, Gulnaz A, Anwar S, et al. Synthetization and Characterization of Zinc Oxide Nanoparticles by X- Ray Diffractometry (XRD), Fourier Transforms, Infra-Red Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Antibacterial Activity Test. Am. J. Phys. Sci. 2024; 2: 1–25. doi: 10.47604/ajps.2294
Yu H, Xu H, Hao T, et al. Physicochemical and Engineering Aspects Facile synthesis of ZnO / halloysite nanotube composite with greatly enhanced photocatalytic performance. Colloids and Surfaces A. 2024; 688.
Ali A, Ambreen S, Javed R, et al. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mater. Sci. Eng. C. 2014; 74: 137–145. doi: 10.1016/j.msec.2017.01.004
Jin SE, Jin HE. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects. Nanomaterials. 2021; 11: 1–35. doi: 10.3390/nano11020263
Pascariu P, Gherasim C, Airinei A, Metal Oxide Nanostructures (MONs) as Photocatalysts for Ciprofloxacin Degradation. Int. J. Mol. Sci. 2023; 24. doi: 10.3390/ijms24119564
Aghdasi S, Shokri M. Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: The effect of operational parameters. Iran. J. Catal. 2016; 6: 481–487.
Sarvalkar PD, Kamble SS, Powar PS, et al. Synthesized rGO/f-MWCNT-architectured 1-D ZnO nanocomposites for azo dyes adsorption, photocatalytic degradation, and biological applications. Catal. Commun. 2024; 187: 106846. doi: 10.1016/j.catcom.2024.106846
Sohaib M, Iqbal T, Afsheen S, et al. Novel sol–gel synthesis of Mo-doped ZnO-NPs for photo-catalytic waste water treatment using the RhB dye as a model pollutant. Environ. Dev. Sustain. 2023; 25: 11583–11598. doi: 10.1007/s10668-022-02543-9
Pavithra M, M B JR, Reusable porous chromium- zinc oxide nano-sheets for efficient detoxification of xenobiotics through integrated advanced oxidation water clean-up process, J. Hazard. Mater. Adv. 2024; 13: 100403. doi: 10.1016/j.hazadv.2024.100403
Heng ZW, Chong WC, Pang YL, Koo CH. An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation, J. Environ. Chem. Eng. 2021; 9: 105199. doi: .1016/j.jece.2021.105199
Wolski L, Grzelak K, Muńko M, et al. Nowaczyk, Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathways, Appl. Surf. Sci. 2021; 563. doi: 10.1016/j.apsusc.2021.150338
Chauhan PS, Kirtiman S, Aditya C, et al. Combined advanced oxidation dye-wastewater treatment plant: design and development with data-driven predictive performance modeling. Clean Water 7. 2024; 1: 15. doi: 10.1038/s41545-024-00308-7
Şengönül H, Oktay D. Utilization of Prunus serrulata leaf extract for the synthesis and characterization of ZnO nanoparticles. Nano-Structures & Nano-Objects. 2024; 37: 101084. doi: 10.1016/j.nanoso.2023.101084